| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							atom1d | 
							 |-  ( B e. HAtoms <-> E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) ) | 
						
						
							| 2 | 
							
								
							 | 
							spansnj | 
							 |-  ( ( A e. CH /\ x e. ~H ) -> ( A +H ( span ` { x } ) ) = ( A vH ( span ` { x } ) ) ) | 
						
						
							| 3 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = ( span ` { x } ) -> ( A +H B ) = ( A +H ( span ` { x } ) ) ) | 
						
						
							| 4 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = ( span ` { x } ) -> ( A vH B ) = ( A vH ( span ` { x } ) ) ) | 
						
						
							| 5 | 
							
								3 4
							 | 
							eqeq12d | 
							 |-  ( B = ( span ` { x } ) -> ( ( A +H B ) = ( A vH B ) <-> ( A +H ( span ` { x } ) ) = ( A vH ( span ` { x } ) ) ) ) | 
						
						
							| 6 | 
							
								2 5
							 | 
							imbitrrid | 
							 |-  ( B = ( span ` { x } ) -> ( ( A e. CH /\ x e. ~H ) -> ( A +H B ) = ( A vH B ) ) ) | 
						
						
							| 7 | 
							
								6
							 | 
							expd | 
							 |-  ( B = ( span ` { x } ) -> ( A e. CH -> ( x e. ~H -> ( A +H B ) = ( A vH B ) ) ) ) | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( A e. CH -> ( x e. ~H -> ( A +H B ) = ( A vH B ) ) ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							com3l | 
							 |-  ( A e. CH -> ( x e. ~H -> ( ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( A +H B ) = ( A vH B ) ) ) ) | 
						
						
							| 10 | 
							
								9
							 | 
							rexlimdv | 
							 |-  ( A e. CH -> ( E. x e. ~H ( x =/= 0h /\ B = ( span ` { x } ) ) -> ( A +H B ) = ( A vH B ) ) ) | 
						
						
							| 11 | 
							
								1 10
							 | 
							biimtrid | 
							 |-  ( A e. CH -> ( B e. HAtoms -> ( A +H B ) = ( A vH B ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							imp | 
							 |-  ( ( A e. CH /\ B e. HAtoms ) -> ( A +H B ) = ( A vH B ) )  |