Metamath Proof Explorer


Theorem chjcom

Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chjcom
|- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) )

Proof

Step Hyp Ref Expression
1 chsh
 |-  ( A e. CH -> A e. SH )
2 chsh
 |-  ( B e. CH -> B e. SH )
3 shjcom
 |-  ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) )
4 1 2 3 syl2an
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) )