Description: Commutative law for Hilbert lattice join. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chjcom | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh | |- ( A e. CH -> A e. SH ) |
|
2 | chsh | |- ( B e. CH -> B e. SH ) |
|
3 | shjcom | |- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) ) |
|
4 | 1 2 3 | syl2an | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) ) |