Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A = if ( A e. CH , A , ~H ) -> A = if ( A e. CH , A , ~H ) ) |
2 |
|
fveq2 |
|- ( A = if ( A e. CH , A , ~H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , ~H ) ) ) |
3 |
1 2
|
oveq12d |
|- ( A = if ( A e. CH , A , ~H ) -> ( A vH ( _|_ ` A ) ) = ( if ( A e. CH , A , ~H ) vH ( _|_ ` if ( A e. CH , A , ~H ) ) ) ) |
4 |
3
|
eqeq1d |
|- ( A = if ( A e. CH , A , ~H ) -> ( ( A vH ( _|_ ` A ) ) = ~H <-> ( if ( A e. CH , A , ~H ) vH ( _|_ ` if ( A e. CH , A , ~H ) ) ) = ~H ) ) |
5 |
|
ifchhv |
|- if ( A e. CH , A , ~H ) e. CH |
6 |
5
|
chjoi |
|- ( if ( A e. CH , A , ~H ) vH ( _|_ ` if ( A e. CH , A , ~H ) ) ) = ~H |
7 |
4 6
|
dedth |
|- ( A e. CH -> ( A vH ( _|_ ` A ) ) = ~H ) |