| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmslsschl.x |  |-  X = ( W |`s U ) | 
						
							| 2 |  | chlcsschl.s |  |-  S = ( ClSubSp ` W ) | 
						
							| 3 |  | hlbn |  |-  ( W e. CHil -> W e. Ban ) | 
						
							| 4 |  | hlcph |  |-  ( W e. CHil -> W e. CPreHil ) | 
						
							| 5 | 3 4 | jca |  |-  ( W e. CHil -> ( W e. Ban /\ W e. CPreHil ) ) | 
						
							| 6 | 1 2 | bncssbn |  |-  ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. Ban ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( W e. CHil /\ U e. S ) -> X e. Ban ) | 
						
							| 8 |  | hlphl |  |-  ( W e. CHil -> W e. PreHil ) | 
						
							| 9 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 10 | 2 9 | csslss |  |-  ( ( W e. PreHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) | 
						
							| 11 | 8 10 | sylan |  |-  ( ( W e. CHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) | 
						
							| 12 | 1 9 | cphsscph |  |-  ( ( W e. CPreHil /\ U e. ( LSubSp ` W ) ) -> X e. CPreHil ) | 
						
							| 13 | 4 11 12 | syl2an2r |  |-  ( ( W e. CHil /\ U e. S ) -> X e. CPreHil ) | 
						
							| 14 |  | ishl |  |-  ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) | 
						
							| 15 | 7 13 14 | sylanbrc |  |-  ( ( W e. CHil /\ U e. S ) -> X e. CHil ) |