Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chlej1 | |- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh | |- ( A e. CH -> A e. SH ) |
|
2 | chsh | |- ( B e. CH -> B e. SH ) |
|
3 | chsh | |- ( C e. CH -> C e. SH ) |
|
4 | shlej1 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) ) |
|
5 | 1 2 3 4 | syl3anl | |- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) ) |