Metamath Proof Explorer


Theorem chlej12i

Description: Add join to both sides of a Hilbert lattice ordering. (Contributed by NM, 19-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
chlub.1
|- C e. CH
chlej12.4
|- D e. CH
Assertion chlej12i
|- ( ( A C_ B /\ C C_ D ) -> ( A vH C ) C_ ( B vH D ) )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 chlub.1
 |-  C e. CH
4 chlej12.4
 |-  D e. CH
5 1 2 3 chlej1i
 |-  ( A C_ B -> ( A vH C ) C_ ( B vH C ) )
6 3 4 2 chlej2i
 |-  ( C C_ D -> ( B vH C ) C_ ( B vH D ) )
7 5 6 sylan9ss
 |-  ( ( A C_ B /\ C C_ D ) -> ( A vH C ) C_ ( B vH D ) )