Description: Add join to both sides of Hilbert lattice ordering. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chlej2 | |- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_ B ) -> ( C vH A ) C_ ( C vH B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chsh | |- ( A e. CH -> A e. SH ) | |
| 2 | chsh | |- ( B e. CH -> B e. SH ) | |
| 3 | chsh | |- ( C e. CH -> C e. SH ) | |
| 4 | shlej2 | |- ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( C vH A ) C_ ( C vH B ) ) | |
| 5 | 1 2 3 4 | syl3anl | |- ( ( ( A e. CH /\ B e. CH /\ C e. CH ) /\ A C_ B ) -> ( C vH A ) C_ ( C vH B ) ) |