Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|- A e. CH |
2 |
|
chjcl.2 |
|- B e. CH |
3 |
|
ssid |
|- B C_ B |
4 |
1 2 2
|
chlubii |
|- ( ( A C_ B /\ B C_ B ) -> ( A vH B ) C_ B ) |
5 |
3 4
|
mpan2 |
|- ( A C_ B -> ( A vH B ) C_ B ) |
6 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
7 |
5 6
|
jctir |
|- ( A C_ B -> ( ( A vH B ) C_ B /\ B C_ ( A vH B ) ) ) |
8 |
|
eqss |
|- ( ( A vH B ) = B <-> ( ( A vH B ) C_ B /\ B C_ ( A vH B ) ) ) |
9 |
7 8
|
sylibr |
|- ( A C_ B -> ( A vH B ) = B ) |
10 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
11 |
|
eqimss |
|- ( ( A vH B ) = B -> ( A vH B ) C_ B ) |
12 |
10 11
|
sstrid |
|- ( ( A vH B ) = B -> A C_ B ) |
13 |
9 12
|
impbii |
|- ( A C_ B <-> ( A vH B ) = B ) |