| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							 |-  B e. CH  | 
						
						
							| 3 | 
							
								
							 | 
							ssid | 
							 |-  B C_ B  | 
						
						
							| 4 | 
							
								1 2 2
							 | 
							chlubii | 
							 |-  ( ( A C_ B /\ B C_ B ) -> ( A vH B ) C_ B )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mpan2 | 
							 |-  ( A C_ B -> ( A vH B ) C_ B )  | 
						
						
							| 6 | 
							
								2 1
							 | 
							chub2i | 
							 |-  B C_ ( A vH B )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							jctir | 
							 |-  ( A C_ B -> ( ( A vH B ) C_ B /\ B C_ ( A vH B ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqss | 
							 |-  ( ( A vH B ) = B <-> ( ( A vH B ) C_ B /\ B C_ ( A vH B ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							sylibr | 
							 |-  ( A C_ B -> ( A vH B ) = B )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							chub1i | 
							 |-  A C_ ( A vH B )  | 
						
						
							| 11 | 
							
								
							 | 
							eqimss | 
							 |-  ( ( A vH B ) = B -> ( A vH B ) C_ B )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sstrid | 
							 |-  ( ( A vH B ) = B -> A C_ B )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							impbii | 
							 |-  ( A C_ B <-> ( A vH B ) = B )  |