Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | chlejb2 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( B vH A ) = B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chlejb1 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( A vH B ) = B ) ) |
|
2 | chjcom | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) ) |
|
3 | 2 | eqeq1d | |- ( ( A e. CH /\ B e. CH ) -> ( ( A vH B ) = B <-> ( B vH A ) = B ) ) |
4 | 1 3 | bitrd | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( B vH A ) = B ) ) |