Metamath Proof Explorer


Theorem chlejb2

Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Assertion chlejb2
|- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( B vH A ) = B ) )

Proof

Step Hyp Ref Expression
1 chlejb1
 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( A vH B ) = B ) )
2 chjcom
 |-  ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) )
3 2 eqeq1d
 |-  ( ( A e. CH /\ B e. CH ) -> ( ( A vH B ) = B <-> ( B vH A ) = B ) )
4 1 3 bitrd
 |-  ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( B vH A ) = B ) )