Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chlejb2 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( B vH A ) = B ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chlejb1 | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( A vH B ) = B ) )  | 
						|
| 2 | chjcom | |- ( ( A e. CH /\ B e. CH ) -> ( A vH B ) = ( B vH A ) )  | 
						|
| 3 | 2 | eqeq1d | |- ( ( A e. CH /\ B e. CH ) -> ( ( A vH B ) = B <-> ( B vH A ) = B ) )  | 
						
| 4 | 1 3 | bitrd | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ B <-> ( B vH A ) = B ) )  |