Step |
Hyp |
Ref |
Expression |
1 |
|
chlim.1 |
|- A e. _V |
2 |
|
isch2 |
|- ( H e. CH <-> ( H e. SH /\ A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) ) |
3 |
2
|
simprbi |
|- ( H e. CH -> A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) ) |
4 |
|
nnex |
|- NN e. _V |
5 |
|
fex |
|- ( ( F : NN --> H /\ NN e. _V ) -> F e. _V ) |
6 |
4 5
|
mpan2 |
|- ( F : NN --> H -> F e. _V ) |
7 |
6
|
adantr |
|- ( ( F : NN --> H /\ F ~~>v A ) -> F e. _V ) |
8 |
|
feq1 |
|- ( f = F -> ( f : NN --> H <-> F : NN --> H ) ) |
9 |
|
breq1 |
|- ( f = F -> ( f ~~>v x <-> F ~~>v x ) ) |
10 |
8 9
|
anbi12d |
|- ( f = F -> ( ( f : NN --> H /\ f ~~>v x ) <-> ( F : NN --> H /\ F ~~>v x ) ) ) |
11 |
10
|
imbi1d |
|- ( f = F -> ( ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) ) ) |
12 |
11
|
albidv |
|- ( f = F -> ( A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) <-> A. x ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) ) ) |
13 |
12
|
spcgv |
|- ( F e. _V -> ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> A. x ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) ) ) |
14 |
|
breq2 |
|- ( x = A -> ( F ~~>v x <-> F ~~>v A ) ) |
15 |
14
|
anbi2d |
|- ( x = A -> ( ( F : NN --> H /\ F ~~>v x ) <-> ( F : NN --> H /\ F ~~>v A ) ) ) |
16 |
|
eleq1 |
|- ( x = A -> ( x e. H <-> A e. H ) ) |
17 |
15 16
|
imbi12d |
|- ( x = A -> ( ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) <-> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) ) |
18 |
1 17
|
spcv |
|- ( A. x ( ( F : NN --> H /\ F ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) |
19 |
13 18
|
syl6 |
|- ( F e. _V -> ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) ) |
20 |
7 19
|
syl |
|- ( ( F : NN --> H /\ F ~~>v A ) -> ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) ) |
21 |
20
|
pm2.43b |
|- ( A. f A. x ( ( f : NN --> H /\ f ~~>v x ) -> x e. H ) -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) |
22 |
3 21
|
syl |
|- ( H e. CH -> ( ( F : NN --> H /\ F ~~>v A ) -> A e. H ) ) |
23 |
22
|
3impib |
|- ( ( H e. CH /\ F : NN --> H /\ F ~~>v A ) -> A e. H ) |