Metamath Proof Explorer


Theorem chlub

Description: Hilbert lattice join is the least upper bound of two elements. (Contributed by NM, 12-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion chlub
|- ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) )

Proof

Step Hyp Ref Expression
1 chsh
 |-  ( A e. CH -> A e. SH )
2 chsh
 |-  ( B e. CH -> B e. SH )
3 shlub
 |-  ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) )
4 2 3 syl3an2
 |-  ( ( A e. SH /\ B e. CH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) )
5 1 4 syl3an1
 |-  ( ( A e. CH /\ B e. CH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) )