Description: Meet with Hilbert lattice zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chm0 | |- ( A e. CH -> ( A i^i 0H ) = 0H )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ineq1 | |- ( A = if ( A e. CH , A , 0H ) -> ( A i^i 0H ) = ( if ( A e. CH , A , 0H ) i^i 0H ) )  | 
						|
| 2 | 1 | eqeq1d | |- ( A = if ( A e. CH , A , 0H ) -> ( ( A i^i 0H ) = 0H <-> ( if ( A e. CH , A , 0H ) i^i 0H ) = 0H ) )  | 
						
| 3 | h0elch | |- 0H e. CH  | 
						|
| 4 | 3 | elimel | |- if ( A e. CH , A , 0H ) e. CH  | 
						
| 5 | 4 | chm0i | |- ( if ( A e. CH , A , 0H ) i^i 0H ) = 0H  | 
						
| 6 | 2 5 | dedth | |- ( A e. CH -> ( A i^i 0H ) = 0H )  |