Metamath Proof Explorer


Theorem chm0i

Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypothesis ch0le.1
|- A e. CH
Assertion chm0i
|- ( A i^i 0H ) = 0H

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 inss2
 |-  ( A i^i 0H ) C_ 0H
3 1 ch0lei
 |-  0H C_ A
4 ssid
 |-  0H C_ 0H
5 3 4 ssini
 |-  0H C_ ( A i^i 0H )
6 2 5 eqssi
 |-  ( A i^i 0H ) = 0H