Metamath Proof Explorer
Description: Meet with Hilbert lattice zero. (Contributed by NM, 6-Aug-2004)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypothesis |
ch0le.1 |
|- A e. CH |
|
Assertion |
chm0i |
|- ( A i^i 0H ) = 0H |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|- A e. CH |
2 |
|
inss2 |
|- ( A i^i 0H ) C_ 0H |
3 |
1
|
ch0lei |
|- 0H C_ A |
4 |
|
ssid |
|- 0H C_ 0H |
5 |
3 4
|
ssini |
|- 0H C_ ( A i^i 0H ) |
6 |
2 5
|
eqssi |
|- ( A i^i 0H ) = 0H |