Step |
Hyp |
Ref |
Expression |
1 |
|
neeq1 |
|- ( A = if ( A e. CH , A , 0H ) -> ( A =/= 0H <-> if ( A e. CH , A , 0H ) =/= 0H ) ) |
2 |
|
rexeq |
|- ( A = if ( A e. CH , A , 0H ) -> ( E. x e. A x =/= 0h <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) ) |
3 |
1 2
|
bibi12d |
|- ( A = if ( A e. CH , A , 0H ) -> ( ( A =/= 0H <-> E. x e. A x =/= 0h ) <-> ( if ( A e. CH , A , 0H ) =/= 0H <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) ) ) |
4 |
|
h0elch |
|- 0H e. CH |
5 |
4
|
elimel |
|- if ( A e. CH , A , 0H ) e. CH |
6 |
5
|
chne0i |
|- ( if ( A e. CH , A , 0H ) =/= 0H <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) |
7 |
3 6
|
dedth |
|- ( A e. CH -> ( A =/= 0H <-> E. x e. A x =/= 0h ) ) |