| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							neeq1 | 
							 |-  ( A = if ( A e. CH , A , 0H ) -> ( A =/= 0H <-> if ( A e. CH , A , 0H ) =/= 0H ) )  | 
						
						
							| 2 | 
							
								
							 | 
							rexeq | 
							 |-  ( A = if ( A e. CH , A , 0H ) -> ( E. x e. A x =/= 0h <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							bibi12d | 
							 |-  ( A = if ( A e. CH , A , 0H ) -> ( ( A =/= 0H <-> E. x e. A x =/= 0h ) <-> ( if ( A e. CH , A , 0H ) =/= 0H <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							h0elch | 
							 |-  0H e. CH  | 
						
						
							| 5 | 
							
								4
							 | 
							elimel | 
							 |-  if ( A e. CH , A , 0H ) e. CH  | 
						
						
							| 6 | 
							
								5
							 | 
							chne0i | 
							 |-  ( if ( A e. CH , A , 0H ) =/= 0H <-> E. x e. if ( A e. CH , A , 0H ) x =/= 0h )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							dedth | 
							 |-  ( A e. CH -> ( A =/= 0H <-> E. x e. A x =/= 0h ) )  |