| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ch0le.1 | 
							 |-  A e. CH  | 
						
						
							| 2 | 
							
								
							 | 
							chjcl.2 | 
							 |-  B e. CH  | 
						
						
							| 3 | 
							
								1 2
							 | 
							chub1i | 
							 |-  A C_ ( A vH B )  | 
						
						
							| 4 | 
							
								3
							 | 
							biantrur | 
							 |-  ( -. A = ( A vH B ) <-> ( A C_ ( A vH B ) /\ -. A = ( A vH B ) ) )  | 
						
						
							| 5 | 
							
								2 1
							 | 
							chlejb1i | 
							 |-  ( B C_ A <-> ( B vH A ) = A )  | 
						
						
							| 6 | 
							
								
							 | 
							eqcom | 
							 |-  ( ( B vH A ) = A <-> A = ( B vH A ) )  | 
						
						
							| 7 | 
							
								2 1
							 | 
							chjcomi | 
							 |-  ( B vH A ) = ( A vH B )  | 
						
						
							| 8 | 
							
								7
							 | 
							eqeq2i | 
							 |-  ( A = ( B vH A ) <-> A = ( A vH B ) )  | 
						
						
							| 9 | 
							
								5 6 8
							 | 
							3bitri | 
							 |-  ( B C_ A <-> A = ( A vH B ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							notbii | 
							 |-  ( -. B C_ A <-> -. A = ( A vH B ) )  | 
						
						
							| 11 | 
							
								
							 | 
							dfpss2 | 
							 |-  ( A C. ( A vH B ) <-> ( A C_ ( A vH B ) /\ -. A = ( A vH B ) ) )  | 
						
						
							| 12 | 
							
								4 10 11
							 | 
							3bitr4i | 
							 |-  ( -. B C_ A <-> A C. ( A vH B ) )  |