Step |
Hyp |
Ref |
Expression |
1 |
|
ch0le.1 |
|- A e. CH |
2 |
|
chjcl.2 |
|- B e. CH |
3 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
4 |
3
|
biantrur |
|- ( -. A = ( A vH B ) <-> ( A C_ ( A vH B ) /\ -. A = ( A vH B ) ) ) |
5 |
2 1
|
chlejb1i |
|- ( B C_ A <-> ( B vH A ) = A ) |
6 |
|
eqcom |
|- ( ( B vH A ) = A <-> A = ( B vH A ) ) |
7 |
2 1
|
chjcomi |
|- ( B vH A ) = ( A vH B ) |
8 |
7
|
eqeq2i |
|- ( A = ( B vH A ) <-> A = ( A vH B ) ) |
9 |
5 6 8
|
3bitri |
|- ( B C_ A <-> A = ( A vH B ) ) |
10 |
9
|
notbii |
|- ( -. B C_ A <-> -. A = ( A vH B ) ) |
11 |
|
dfpss2 |
|- ( A C. ( A vH B ) <-> ( A C_ ( A vH B ) /\ -. A = ( A vH B ) ) ) |
12 |
4 10 11
|
3bitr4i |
|- ( -. B C_ A <-> A C. ( A vH B ) ) |