Metamath Proof Explorer


Theorem chnlei

Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ch0le.1
|- A e. CH
chjcl.2
|- B e. CH
Assertion chnlei
|- ( -. B C_ A <-> A C. ( A vH B ) )

Proof

Step Hyp Ref Expression
1 ch0le.1
 |-  A e. CH
2 chjcl.2
 |-  B e. CH
3 1 2 chub1i
 |-  A C_ ( A vH B )
4 3 biantrur
 |-  ( -. A = ( A vH B ) <-> ( A C_ ( A vH B ) /\ -. A = ( A vH B ) ) )
5 2 1 chlejb1i
 |-  ( B C_ A <-> ( B vH A ) = A )
6 eqcom
 |-  ( ( B vH A ) = A <-> A = ( B vH A ) )
7 2 1 chjcomi
 |-  ( B vH A ) = ( A vH B )
8 7 eqeq2i
 |-  ( A = ( B vH A ) <-> A = ( A vH B ) )
9 5 6 8 3bitri
 |-  ( B C_ A <-> A = ( A vH B ) )
10 9 notbii
 |-  ( -. B C_ A <-> -. A = ( A vH B ) )
11 dfpss2
 |-  ( A C. ( A vH B ) <-> ( A C_ ( A vH B ) /\ -. A = ( A vH B ) ) )
12 4 10 11 3bitr4i
 |-  ( -. B C_ A <-> A C. ( A vH B ) )