Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chnlen0 | |- ( B e. CH -> ( -. A C_ B -> -. A = 0H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le | |- ( B e. CH -> 0H C_ B ) |
|
| 2 | sseq1 | |- ( A = 0H -> ( A C_ B <-> 0H C_ B ) ) |
|
| 3 | 1 2 | syl5ibrcom | |- ( B e. CH -> ( A = 0H -> A C_ B ) ) |
| 4 | 3 | con3d | |- ( B e. CH -> ( -. A C_ B -> -. A = 0H ) ) |