| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							helsh | 
							 |-  ~H e. SH  | 
						
						
							| 2 | 
							
								
							 | 
							shocel | 
							 |-  ( ~H e. SH -> ( x e. ( _|_ ` ~H ) <-> ( x e. ~H /\ A. y e. ~H ( x .ih y ) = 0 ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							ax-mp | 
							 |-  ( x e. ( _|_ ` ~H ) <-> ( x e. ~H /\ A. y e. ~H ( x .ih y ) = 0 ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							simprbi | 
							 |-  ( x e. ( _|_ ` ~H ) -> A. y e. ~H ( x .ih y ) = 0 )  | 
						
						
							| 5 | 
							
								
							 | 
							shocss | 
							 |-  ( ~H e. SH -> ( _|_ ` ~H ) C_ ~H )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							ax-mp | 
							 |-  ( _|_ ` ~H ) C_ ~H  | 
						
						
							| 7 | 
							
								6
							 | 
							sseli | 
							 |-  ( x e. ( _|_ ` ~H ) -> x e. ~H )  | 
						
						
							| 8 | 
							
								
							 | 
							hial0 | 
							 |-  ( x e. ~H -> ( A. y e. ~H ( x .ih y ) = 0 <-> x = 0h ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							 |-  ( x e. ( _|_ ` ~H ) -> ( A. y e. ~H ( x .ih y ) = 0 <-> x = 0h ) )  | 
						
						
							| 10 | 
							
								4 9
							 | 
							mpbid | 
							 |-  ( x e. ( _|_ ` ~H ) -> x = 0h )  | 
						
						
							| 11 | 
							
								
							 | 
							elch0 | 
							 |-  ( x e. 0H <-> x = 0h )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylibr | 
							 |-  ( x e. ( _|_ ` ~H ) -> x e. 0H )  | 
						
						
							| 13 | 
							
								12
							 | 
							ssriv | 
							 |-  ( _|_ ` ~H ) C_ 0H  | 
						
						
							| 14 | 
							
								
							 | 
							h0elsh | 
							 |-  0H e. SH  | 
						
						
							| 15 | 
							
								
							 | 
							shococss | 
							 |-  ( 0H e. SH -> 0H C_ ( _|_ ` ( _|_ ` 0H ) ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							ax-mp | 
							 |-  0H C_ ( _|_ ` ( _|_ ` 0H ) )  | 
						
						
							| 17 | 
							
								
							 | 
							choc0 | 
							 |-  ( _|_ ` 0H ) = ~H  | 
						
						
							| 18 | 
							
								17
							 | 
							fveq2i | 
							 |-  ( _|_ ` ( _|_ ` 0H ) ) = ( _|_ ` ~H )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							sseqtri | 
							 |-  0H C_ ( _|_ ` ~H )  | 
						
						
							| 20 | 
							
								13 19
							 | 
							eqssi | 
							 |-  ( _|_ ` ~H ) = 0H  |