Metamath Proof Explorer


Theorem choccl

Description: Closure of complement of Hilbert subspace. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 22-Jul-2001) (New usage is discouraged.)

Ref Expression
Assertion choccl
|- ( A e. CH -> ( _|_ ` A ) e. CH )

Proof

Step Hyp Ref Expression
1 chsh
 |-  ( A e. CH -> A e. SH )
2 shoccl
 |-  ( A e. SH -> ( _|_ ` A ) e. CH )
3 1 2 syl
 |-  ( A e. CH -> ( _|_ ` A ) e. CH )