Step |
Hyp |
Ref |
Expression |
1 |
|
id |
|- ( A = if ( A e. CH , A , 0H ) -> A = if ( A e. CH , A , 0H ) ) |
2 |
|
fveq2 |
|- ( A = if ( A e. CH , A , 0H ) -> ( _|_ ` A ) = ( _|_ ` if ( A e. CH , A , 0H ) ) ) |
3 |
1 2
|
ineq12d |
|- ( A = if ( A e. CH , A , 0H ) -> ( A i^i ( _|_ ` A ) ) = ( if ( A e. CH , A , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) ) |
4 |
3
|
eqeq1d |
|- ( A = if ( A e. CH , A , 0H ) -> ( ( A i^i ( _|_ ` A ) ) = 0H <-> ( if ( A e. CH , A , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H ) ) |
5 |
|
h0elch |
|- 0H e. CH |
6 |
5
|
elimel |
|- if ( A e. CH , A , 0H ) e. CH |
7 |
6
|
chocini |
|- ( if ( A e. CH , A , 0H ) i^i ( _|_ ` if ( A e. CH , A , 0H ) ) ) = 0H |
8 |
4 7
|
dedth |
|- ( A e. CH -> ( A i^i ( _|_ ` A ) ) = 0H ) |