Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chocnul | |- ( _|_ ` (/) ) = ~H  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ral0 | |- A. y e. (/) ( x .ih y ) = 0  | 
						|
| 2 | 0ss | |- (/) C_ ~H  | 
						|
| 3 | ocel | |- ( (/) C_ ~H -> ( x e. ( _|_ ` (/) ) <-> ( x e. ~H /\ A. y e. (/) ( x .ih y ) = 0 ) ) )  | 
						|
| 4 | 2 3 | ax-mp | |- ( x e. ( _|_ ` (/) ) <-> ( x e. ~H /\ A. y e. (/) ( x .ih y ) = 0 ) )  | 
						
| 5 | 1 4 | mpbiran2 | |- ( x e. ( _|_ ` (/) ) <-> x e. ~H )  | 
						
| 6 | 5 | eqriv | |- ( _|_ ` (/) ) = ~H  |