Step |
Hyp |
Ref |
Expression |
1 |
|
chocuni.1 |
|- H e. CH |
2 |
1
|
chshii |
|- H e. SH |
3 |
2
|
a1i |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> H e. SH ) |
4 |
|
shocsh |
|- ( H e. SH -> ( _|_ ` H ) e. SH ) |
5 |
2 4
|
mp1i |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( _|_ ` H ) e. SH ) |
6 |
|
ocin |
|- ( H e. SH -> ( H i^i ( _|_ ` H ) ) = 0H ) |
7 |
2 6
|
mp1i |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( H i^i ( _|_ ` H ) ) = 0H ) |
8 |
|
simplll |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> A e. H ) |
9 |
|
simpllr |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> B e. ( _|_ ` H ) ) |
10 |
|
simplrl |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> C e. H ) |
11 |
|
simplrr |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> D e. ( _|_ ` H ) ) |
12 |
|
eqtr2 |
|- ( ( R = ( A +h B ) /\ R = ( C +h D ) ) -> ( A +h B ) = ( C +h D ) ) |
13 |
12
|
adantl |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( A +h B ) = ( C +h D ) ) |
14 |
3 5 7 8 9 10 11 13
|
shuni |
|- ( ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) /\ ( R = ( A +h B ) /\ R = ( C +h D ) ) ) -> ( A = C /\ B = D ) ) |
15 |
14
|
ex |
|- ( ( ( A e. H /\ B e. ( _|_ ` H ) ) /\ ( C e. H /\ D e. ( _|_ ` H ) ) ) -> ( ( R = ( A +h B ) /\ R = ( C +h D ) ) -> ( A = C /\ B = D ) ) ) |