Metamath Proof Explorer


Theorem chocvali

Description: Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of A is the set of vectors that are orthogonal to all vectors in A . (Contributed by NM, 8-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypothesis chocval.1
|- A e. CH
Assertion chocvali
|- ( _|_ ` A ) = { x e. ~H | A. y e. A ( x .ih y ) = 0 }

Proof

Step Hyp Ref Expression
1 chocval.1
 |-  A e. CH
2 1 chssii
 |-  A C_ ~H
3 ocval
 |-  ( A C_ ~H -> ( _|_ ` A ) = { x e. ~H | A. y e. A ( x .ih y ) = 0 } )
4 2 3 ax-mp
 |-  ( _|_ ` A ) = { x e. ~H | A. y e. A ( x .ih y ) = 0 }