Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmlem.angdef |
|- F = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
2 |
|
chordthmlem.A |
|- ( ph -> A e. CC ) |
3 |
|
chordthmlem.B |
|- ( ph -> B e. CC ) |
4 |
|
chordthmlem.Q |
|- ( ph -> Q e. CC ) |
5 |
|
chordthmlem.M |
|- ( ph -> M = ( ( A + B ) / 2 ) ) |
6 |
|
chordthmlem.ABequidistQ |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
7 |
|
chordthmlem.AneB |
|- ( ph -> A =/= B ) |
8 |
|
chordthmlem.QneM |
|- ( ph -> Q =/= M ) |
9 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
10 |
2 3
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
11 |
10
|
halfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. CC ) |
12 |
5 11
|
eqeltrd |
|- ( ph -> M e. CC ) |
13 |
4 12
|
subcld |
|- ( ph -> ( Q - M ) e. CC ) |
14 |
4 12 8
|
subne0d |
|- ( ph -> ( Q - M ) =/= 0 ) |
15 |
3 12
|
subcld |
|- ( ph -> ( B - M ) e. CC ) |
16 |
5
|
oveq1d |
|- ( ph -> ( M x. 2 ) = ( ( ( A + B ) / 2 ) x. 2 ) ) |
17 |
12
|
times2d |
|- ( ph -> ( M x. 2 ) = ( M + M ) ) |
18 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
19 |
|
2ne0 |
|- 2 =/= 0 |
20 |
19
|
a1i |
|- ( ph -> 2 =/= 0 ) |
21 |
10 18 20
|
divcan1d |
|- ( ph -> ( ( ( A + B ) / 2 ) x. 2 ) = ( A + B ) ) |
22 |
16 17 21
|
3eqtr3d |
|- ( ph -> ( M + M ) = ( A + B ) ) |
23 |
2 3 3 7
|
addneintr2d |
|- ( ph -> ( A + B ) =/= ( B + B ) ) |
24 |
22 23
|
eqnetrd |
|- ( ph -> ( M + M ) =/= ( B + B ) ) |
25 |
24
|
neneqd |
|- ( ph -> -. ( M + M ) = ( B + B ) ) |
26 |
|
oveq12 |
|- ( ( M = B /\ M = B ) -> ( M + M ) = ( B + B ) ) |
27 |
26
|
anidms |
|- ( M = B -> ( M + M ) = ( B + B ) ) |
28 |
25 27
|
nsyl |
|- ( ph -> -. M = B ) |
29 |
28
|
neqned |
|- ( ph -> M =/= B ) |
30 |
29
|
necomd |
|- ( ph -> B =/= M ) |
31 |
3 12 30
|
subne0d |
|- ( ph -> ( B - M ) =/= 0 ) |
32 |
1 13 14 15 31
|
angcld |
|- ( ph -> ( ( Q - M ) F ( B - M ) ) e. ( -u _pi (,] _pi ) ) |
33 |
9 32
|
sselid |
|- ( ph -> ( ( Q - M ) F ( B - M ) ) e. RR ) |
34 |
33
|
recnd |
|- ( ph -> ( ( Q - M ) F ( B - M ) ) e. CC ) |
35 |
34
|
coscld |
|- ( ph -> ( cos ` ( ( Q - M ) F ( B - M ) ) ) e. CC ) |
36 |
3 12
|
negsubdi2d |
|- ( ph -> -u ( B - M ) = ( M - B ) ) |
37 |
12 12 2 3
|
addsubeq4d |
|- ( ph -> ( ( M + M ) = ( A + B ) <-> ( A - M ) = ( M - B ) ) ) |
38 |
22 37
|
mpbid |
|- ( ph -> ( A - M ) = ( M - B ) ) |
39 |
36 38
|
eqtr4d |
|- ( ph -> -u ( B - M ) = ( A - M ) ) |
40 |
39
|
oveq2d |
|- ( ph -> ( ( Q - M ) F -u ( B - M ) ) = ( ( Q - M ) F ( A - M ) ) ) |
41 |
40
|
fveq2d |
|- ( ph -> ( cos ` ( ( Q - M ) F -u ( B - M ) ) ) = ( cos ` ( ( Q - M ) F ( A - M ) ) ) ) |
42 |
1 13 14 15 31
|
cosangneg2d |
|- ( ph -> ( cos ` ( ( Q - M ) F -u ( B - M ) ) ) = -u ( cos ` ( ( Q - M ) F ( B - M ) ) ) ) |
43 |
2 2 3 7
|
addneintrd |
|- ( ph -> ( A + A ) =/= ( A + B ) ) |
44 |
43 22
|
neeqtrrd |
|- ( ph -> ( A + A ) =/= ( M + M ) ) |
45 |
44
|
necomd |
|- ( ph -> ( M + M ) =/= ( A + A ) ) |
46 |
45
|
neneqd |
|- ( ph -> -. ( M + M ) = ( A + A ) ) |
47 |
|
oveq12 |
|- ( ( M = A /\ M = A ) -> ( M + M ) = ( A + A ) ) |
48 |
47
|
anidms |
|- ( M = A -> ( M + M ) = ( A + A ) ) |
49 |
46 48
|
nsyl |
|- ( ph -> -. M = A ) |
50 |
49
|
neqned |
|- ( ph -> M =/= A ) |
51 |
|
eqidd |
|- ( ph -> ( abs ` ( Q - M ) ) = ( abs ` ( Q - M ) ) ) |
52 |
2 12
|
subcld |
|- ( ph -> ( A - M ) e. CC ) |
53 |
52
|
absnegd |
|- ( ph -> ( abs ` -u ( A - M ) ) = ( abs ` ( A - M ) ) ) |
54 |
2 12
|
negsubdi2d |
|- ( ph -> -u ( A - M ) = ( M - A ) ) |
55 |
54
|
fveq2d |
|- ( ph -> ( abs ` -u ( A - M ) ) = ( abs ` ( M - A ) ) ) |
56 |
38
|
fveq2d |
|- ( ph -> ( abs ` ( A - M ) ) = ( abs ` ( M - B ) ) ) |
57 |
53 55 56
|
3eqtr3d |
|- ( ph -> ( abs ` ( M - A ) ) = ( abs ` ( M - B ) ) ) |
58 |
1 4 12 2 4 12 3 8 50 8 29 51 57 6
|
ssscongptld |
|- ( ph -> ( cos ` ( ( Q - M ) F ( A - M ) ) ) = ( cos ` ( ( Q - M ) F ( B - M ) ) ) ) |
59 |
41 42 58
|
3eqtr3rd |
|- ( ph -> ( cos ` ( ( Q - M ) F ( B - M ) ) ) = -u ( cos ` ( ( Q - M ) F ( B - M ) ) ) ) |
60 |
35 59
|
eqnegad |
|- ( ph -> ( cos ` ( ( Q - M ) F ( B - M ) ) ) = 0 ) |
61 |
|
coseq0negpitopi |
|- ( ( ( Q - M ) F ( B - M ) ) e. ( -u _pi (,] _pi ) -> ( ( cos ` ( ( Q - M ) F ( B - M ) ) ) = 0 <-> ( ( Q - M ) F ( B - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
62 |
32 61
|
syl |
|- ( ph -> ( ( cos ` ( ( Q - M ) F ( B - M ) ) ) = 0 <-> ( ( Q - M ) F ( B - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) ) |
63 |
60 62
|
mpbid |
|- ( ph -> ( ( Q - M ) F ( B - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |