Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmlem3.A |
|- ( ph -> A e. CC ) |
2 |
|
chordthmlem3.B |
|- ( ph -> B e. CC ) |
3 |
|
chordthmlem3.Q |
|- ( ph -> Q e. CC ) |
4 |
|
chordthmlem3.X |
|- ( ph -> X e. RR ) |
5 |
|
chordthmlem3.M |
|- ( ph -> M = ( ( A + B ) / 2 ) ) |
6 |
|
chordthmlem3.P |
|- ( ph -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
7 |
|
chordthmlem3.ABequidistQ |
|- ( ph -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
8 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
9 |
8
|
halfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. CC ) |
10 |
5 9
|
eqeltrd |
|- ( ph -> M e. CC ) |
11 |
3 10
|
subcld |
|- ( ph -> ( Q - M ) e. CC ) |
12 |
11
|
abscld |
|- ( ph -> ( abs ` ( Q - M ) ) e. RR ) |
13 |
12
|
recnd |
|- ( ph -> ( abs ` ( Q - M ) ) e. CC ) |
14 |
13
|
sqcld |
|- ( ph -> ( ( abs ` ( Q - M ) ) ^ 2 ) e. CC ) |
15 |
14
|
adantr |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( Q - M ) ) ^ 2 ) e. CC ) |
16 |
15
|
addid1d |
|- ( ( ph /\ P = M ) -> ( ( ( abs ` ( Q - M ) ) ^ 2 ) + 0 ) = ( ( abs ` ( Q - M ) ) ^ 2 ) ) |
17 |
4
|
recnd |
|- ( ph -> X e. CC ) |
18 |
17 1
|
mulcld |
|- ( ph -> ( X x. A ) e. CC ) |
19 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
20 |
19 17
|
subcld |
|- ( ph -> ( 1 - X ) e. CC ) |
21 |
20 2
|
mulcld |
|- ( ph -> ( ( 1 - X ) x. B ) e. CC ) |
22 |
18 21
|
addcld |
|- ( ph -> ( ( X x. A ) + ( ( 1 - X ) x. B ) ) e. CC ) |
23 |
6 22
|
eqeltrd |
|- ( ph -> P e. CC ) |
24 |
23
|
adantr |
|- ( ( ph /\ P = M ) -> P e. CC ) |
25 |
|
simpr |
|- ( ( ph /\ P = M ) -> P = M ) |
26 |
24 25
|
subeq0bd |
|- ( ( ph /\ P = M ) -> ( P - M ) = 0 ) |
27 |
26
|
abs00bd |
|- ( ( ph /\ P = M ) -> ( abs ` ( P - M ) ) = 0 ) |
28 |
27
|
sq0id |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( P - M ) ) ^ 2 ) = 0 ) |
29 |
28
|
oveq2d |
|- ( ( ph /\ P = M ) -> ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + 0 ) ) |
30 |
3
|
adantr |
|- ( ( ph /\ P = M ) -> Q e. CC ) |
31 |
30 24
|
abssubd |
|- ( ( ph /\ P = M ) -> ( abs ` ( Q - P ) ) = ( abs ` ( P - Q ) ) ) |
32 |
25
|
oveq2d |
|- ( ( ph /\ P = M ) -> ( Q - P ) = ( Q - M ) ) |
33 |
32
|
fveq2d |
|- ( ( ph /\ P = M ) -> ( abs ` ( Q - P ) ) = ( abs ` ( Q - M ) ) ) |
34 |
31 33
|
eqtr3d |
|- ( ( ph /\ P = M ) -> ( abs ` ( P - Q ) ) = ( abs ` ( Q - M ) ) ) |
35 |
34
|
oveq1d |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( abs ` ( Q - M ) ) ^ 2 ) ) |
36 |
16 29 35
|
3eqtr4rd |
|- ( ( ph /\ P = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
37 |
23 10
|
subcld |
|- ( ph -> ( P - M ) e. CC ) |
38 |
37
|
abscld |
|- ( ph -> ( abs ` ( P - M ) ) e. RR ) |
39 |
38
|
recnd |
|- ( ph -> ( abs ` ( P - M ) ) e. CC ) |
40 |
39
|
sqcld |
|- ( ph -> ( ( abs ` ( P - M ) ) ^ 2 ) e. CC ) |
41 |
40
|
adantr |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( P - M ) ) ^ 2 ) e. CC ) |
42 |
41
|
addid2d |
|- ( ( ph /\ Q = M ) -> ( 0 + ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( ( abs ` ( P - M ) ) ^ 2 ) ) |
43 |
3
|
adantr |
|- ( ( ph /\ Q = M ) -> Q e. CC ) |
44 |
|
simpr |
|- ( ( ph /\ Q = M ) -> Q = M ) |
45 |
43 44
|
subeq0bd |
|- ( ( ph /\ Q = M ) -> ( Q - M ) = 0 ) |
46 |
45
|
abs00bd |
|- ( ( ph /\ Q = M ) -> ( abs ` ( Q - M ) ) = 0 ) |
47 |
46
|
sq0id |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( Q - M ) ) ^ 2 ) = 0 ) |
48 |
47
|
oveq1d |
|- ( ( ph /\ Q = M ) -> ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( 0 + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
49 |
44
|
oveq2d |
|- ( ( ph /\ Q = M ) -> ( P - Q ) = ( P - M ) ) |
50 |
49
|
fveq2d |
|- ( ( ph /\ Q = M ) -> ( abs ` ( P - Q ) ) = ( abs ` ( P - M ) ) ) |
51 |
50
|
oveq1d |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( abs ` ( P - M ) ) ^ 2 ) ) |
52 |
42 48 51
|
3eqtr4rd |
|- ( ( ph /\ Q = M ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
53 |
23
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> P e. CC ) |
54 |
3
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> Q e. CC ) |
55 |
10
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> M e. CC ) |
56 |
|
simprl |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> P =/= M ) |
57 |
|
simprr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> Q =/= M ) |
58 |
|
eqid |
|- ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) = ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) |
59 |
1
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> A e. CC ) |
60 |
2
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> B e. CC ) |
61 |
4
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> X e. RR ) |
62 |
5
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> M = ( ( A + B ) / 2 ) ) |
63 |
6
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
64 |
7
|
adantr |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> ( abs ` ( A - Q ) ) = ( abs ` ( B - Q ) ) ) |
65 |
58 59 60 54 61 62 63 64 56 57
|
chordthmlem2 |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) |
66 |
|
eqid |
|- ( abs ` ( Q - M ) ) = ( abs ` ( Q - M ) ) |
67 |
|
eqid |
|- ( abs ` ( P - M ) ) = ( abs ` ( P - M ) ) |
68 |
|
eqid |
|- ( abs ` ( P - Q ) ) = ( abs ` ( P - Q ) ) |
69 |
|
eqid |
|- ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) = ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) |
70 |
58 66 67 68 69
|
pythag |
|- ( ( ( P e. CC /\ Q e. CC /\ M e. CC ) /\ ( P =/= M /\ Q =/= M ) /\ ( ( Q - M ) ( x e. ( CC \ { 0 } ) , y e. ( CC \ { 0 } ) |-> ( Im ` ( log ` ( y / x ) ) ) ) ( P - M ) ) e. { ( _pi / 2 ) , -u ( _pi / 2 ) } ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
71 |
53 54 55 56 57 65 70
|
syl321anc |
|- ( ( ph /\ ( P =/= M /\ Q =/= M ) ) -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |
72 |
36 52 71
|
pm2.61da2ne |
|- ( ph -> ( ( abs ` ( P - Q ) ) ^ 2 ) = ( ( ( abs ` ( Q - M ) ) ^ 2 ) + ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |