Step |
Hyp |
Ref |
Expression |
1 |
|
chordthmlem4.A |
|- ( ph -> A e. CC ) |
2 |
|
chordthmlem4.B |
|- ( ph -> B e. CC ) |
3 |
|
chordthmlem4.X |
|- ( ph -> X e. ( 0 [,] 1 ) ) |
4 |
|
chordthmlem4.M |
|- ( ph -> M = ( ( A + B ) / 2 ) ) |
5 |
|
chordthmlem4.P |
|- ( ph -> P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) ) |
6 |
|
1red |
|- ( ph -> 1 e. RR ) |
7 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
8 |
7 3
|
sselid |
|- ( ph -> X e. RR ) |
9 |
6 8
|
resubcld |
|- ( ph -> ( 1 - X ) e. RR ) |
10 |
9
|
recnd |
|- ( ph -> ( 1 - X ) e. CC ) |
11 |
10
|
abscld |
|- ( ph -> ( abs ` ( 1 - X ) ) e. RR ) |
12 |
11
|
recnd |
|- ( ph -> ( abs ` ( 1 - X ) ) e. CC ) |
13 |
2 1
|
subcld |
|- ( ph -> ( B - A ) e. CC ) |
14 |
13
|
abscld |
|- ( ph -> ( abs ` ( B - A ) ) e. RR ) |
15 |
14
|
recnd |
|- ( ph -> ( abs ` ( B - A ) ) e. CC ) |
16 |
8
|
recnd |
|- ( ph -> X e. CC ) |
17 |
16
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
18 |
17
|
recnd |
|- ( ph -> ( abs ` X ) e. CC ) |
19 |
12 15 18 15
|
mul4d |
|- ( ph -> ( ( ( abs ` ( 1 - X ) ) x. ( abs ` ( B - A ) ) ) x. ( ( abs ` X ) x. ( abs ` ( B - A ) ) ) ) = ( ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) x. ( ( abs ` ( B - A ) ) x. ( abs ` ( B - A ) ) ) ) ) |
20 |
16 1
|
mulcld |
|- ( ph -> ( X x. A ) e. CC ) |
21 |
10 2
|
mulcld |
|- ( ph -> ( ( 1 - X ) x. B ) e. CC ) |
22 |
20 21
|
addcld |
|- ( ph -> ( ( X x. A ) + ( ( 1 - X ) x. B ) ) e. CC ) |
23 |
5 22
|
eqeltrd |
|- ( ph -> P e. CC ) |
24 |
1 23 2 16
|
affineequiv2 |
|- ( ph -> ( P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) <-> ( P - A ) = ( ( 1 - X ) x. ( B - A ) ) ) ) |
25 |
5 24
|
mpbid |
|- ( ph -> ( P - A ) = ( ( 1 - X ) x. ( B - A ) ) ) |
26 |
25
|
fveq2d |
|- ( ph -> ( abs ` ( P - A ) ) = ( abs ` ( ( 1 - X ) x. ( B - A ) ) ) ) |
27 |
10 13
|
absmuld |
|- ( ph -> ( abs ` ( ( 1 - X ) x. ( B - A ) ) ) = ( ( abs ` ( 1 - X ) ) x. ( abs ` ( B - A ) ) ) ) |
28 |
26 27
|
eqtrd |
|- ( ph -> ( abs ` ( P - A ) ) = ( ( abs ` ( 1 - X ) ) x. ( abs ` ( B - A ) ) ) ) |
29 |
23 2
|
abssubd |
|- ( ph -> ( abs ` ( P - B ) ) = ( abs ` ( B - P ) ) ) |
30 |
1 23 2 16
|
affineequiv |
|- ( ph -> ( P = ( ( X x. A ) + ( ( 1 - X ) x. B ) ) <-> ( B - P ) = ( X x. ( B - A ) ) ) ) |
31 |
5 30
|
mpbid |
|- ( ph -> ( B - P ) = ( X x. ( B - A ) ) ) |
32 |
31
|
fveq2d |
|- ( ph -> ( abs ` ( B - P ) ) = ( abs ` ( X x. ( B - A ) ) ) ) |
33 |
16 13
|
absmuld |
|- ( ph -> ( abs ` ( X x. ( B - A ) ) ) = ( ( abs ` X ) x. ( abs ` ( B - A ) ) ) ) |
34 |
29 32 33
|
3eqtrd |
|- ( ph -> ( abs ` ( P - B ) ) = ( ( abs ` X ) x. ( abs ` ( B - A ) ) ) ) |
35 |
28 34
|
oveq12d |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( 1 - X ) ) x. ( abs ` ( B - A ) ) ) x. ( ( abs ` X ) x. ( abs ` ( B - A ) ) ) ) ) |
36 |
15
|
sqvald |
|- ( ph -> ( ( abs ` ( B - A ) ) ^ 2 ) = ( ( abs ` ( B - A ) ) x. ( abs ` ( B - A ) ) ) ) |
37 |
36
|
oveq2d |
|- ( ph -> ( ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) = ( ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) x. ( ( abs ` ( B - A ) ) x. ( abs ` ( B - A ) ) ) ) ) |
38 |
19 35 37
|
3eqtr4d |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
39 |
6
|
recnd |
|- ( ph -> 1 e. CC ) |
40 |
39
|
halfcld |
|- ( ph -> ( 1 / 2 ) e. CC ) |
41 |
40
|
sqcld |
|- ( ph -> ( ( 1 / 2 ) ^ 2 ) e. CC ) |
42 |
6
|
rehalfcld |
|- ( ph -> ( 1 / 2 ) e. RR ) |
43 |
42 8
|
resubcld |
|- ( ph -> ( ( 1 / 2 ) - X ) e. RR ) |
44 |
43
|
recnd |
|- ( ph -> ( ( 1 / 2 ) - X ) e. CC ) |
45 |
44
|
abscld |
|- ( ph -> ( abs ` ( ( 1 / 2 ) - X ) ) e. RR ) |
46 |
45
|
recnd |
|- ( ph -> ( abs ` ( ( 1 / 2 ) - X ) ) e. CC ) |
47 |
46
|
sqcld |
|- ( ph -> ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) e. CC ) |
48 |
15
|
sqcld |
|- ( ph -> ( ( abs ` ( B - A ) ) ^ 2 ) e. CC ) |
49 |
41 47 48
|
subdird |
|- ( ph -> ( ( ( ( 1 / 2 ) ^ 2 ) - ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) = ( ( ( ( 1 / 2 ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) - ( ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) ) |
50 |
|
subsq |
|- ( ( ( 1 / 2 ) e. CC /\ ( ( 1 / 2 ) - X ) e. CC ) -> ( ( ( 1 / 2 ) ^ 2 ) - ( ( ( 1 / 2 ) - X ) ^ 2 ) ) = ( ( ( 1 / 2 ) + ( ( 1 / 2 ) - X ) ) x. ( ( 1 / 2 ) - ( ( 1 / 2 ) - X ) ) ) ) |
51 |
40 44 50
|
syl2anc |
|- ( ph -> ( ( ( 1 / 2 ) ^ 2 ) - ( ( ( 1 / 2 ) - X ) ^ 2 ) ) = ( ( ( 1 / 2 ) + ( ( 1 / 2 ) - X ) ) x. ( ( 1 / 2 ) - ( ( 1 / 2 ) - X ) ) ) ) |
52 |
40 40 16
|
addsubassd |
|- ( ph -> ( ( ( 1 / 2 ) + ( 1 / 2 ) ) - X ) = ( ( 1 / 2 ) + ( ( 1 / 2 ) - X ) ) ) |
53 |
39
|
2halvesd |
|- ( ph -> ( ( 1 / 2 ) + ( 1 / 2 ) ) = 1 ) |
54 |
53
|
oveq1d |
|- ( ph -> ( ( ( 1 / 2 ) + ( 1 / 2 ) ) - X ) = ( 1 - X ) ) |
55 |
52 54
|
eqtr3d |
|- ( ph -> ( ( 1 / 2 ) + ( ( 1 / 2 ) - X ) ) = ( 1 - X ) ) |
56 |
40 16
|
nncand |
|- ( ph -> ( ( 1 / 2 ) - ( ( 1 / 2 ) - X ) ) = X ) |
57 |
55 56
|
oveq12d |
|- ( ph -> ( ( ( 1 / 2 ) + ( ( 1 / 2 ) - X ) ) x. ( ( 1 / 2 ) - ( ( 1 / 2 ) - X ) ) ) = ( ( 1 - X ) x. X ) ) |
58 |
51 57
|
eqtr2d |
|- ( ph -> ( ( 1 - X ) x. X ) = ( ( ( 1 / 2 ) ^ 2 ) - ( ( ( 1 / 2 ) - X ) ^ 2 ) ) ) |
59 |
|
elicc01 |
|- ( X e. ( 0 [,] 1 ) <-> ( X e. RR /\ 0 <_ X /\ X <_ 1 ) ) |
60 |
3 59
|
sylib |
|- ( ph -> ( X e. RR /\ 0 <_ X /\ X <_ 1 ) ) |
61 |
60
|
simp3d |
|- ( ph -> X <_ 1 ) |
62 |
8 6 61
|
abssubge0d |
|- ( ph -> ( abs ` ( 1 - X ) ) = ( 1 - X ) ) |
63 |
60
|
simp2d |
|- ( ph -> 0 <_ X ) |
64 |
8 63
|
absidd |
|- ( ph -> ( abs ` X ) = X ) |
65 |
62 64
|
oveq12d |
|- ( ph -> ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) = ( ( 1 - X ) x. X ) ) |
66 |
|
absresq |
|- ( ( ( 1 / 2 ) - X ) e. RR -> ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) = ( ( ( 1 / 2 ) - X ) ^ 2 ) ) |
67 |
43 66
|
syl |
|- ( ph -> ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) = ( ( ( 1 / 2 ) - X ) ^ 2 ) ) |
68 |
67
|
oveq2d |
|- ( ph -> ( ( ( 1 / 2 ) ^ 2 ) - ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) ) = ( ( ( 1 / 2 ) ^ 2 ) - ( ( ( 1 / 2 ) - X ) ^ 2 ) ) ) |
69 |
58 65 68
|
3eqtr4d |
|- ( ph -> ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) = ( ( ( 1 / 2 ) ^ 2 ) - ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) ) ) |
70 |
69
|
oveq1d |
|- ( ph -> ( ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) = ( ( ( ( 1 / 2 ) ^ 2 ) - ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
71 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
72 |
|
2ne0 |
|- 2 =/= 0 |
73 |
72
|
a1i |
|- ( ph -> 2 =/= 0 ) |
74 |
2 71 73
|
divcan4d |
|- ( ph -> ( ( B x. 2 ) / 2 ) = B ) |
75 |
2
|
times2d |
|- ( ph -> ( B x. 2 ) = ( B + B ) ) |
76 |
75
|
oveq1d |
|- ( ph -> ( ( B x. 2 ) / 2 ) = ( ( B + B ) / 2 ) ) |
77 |
74 76
|
eqtr3d |
|- ( ph -> B = ( ( B + B ) / 2 ) ) |
78 |
77 4
|
oveq12d |
|- ( ph -> ( B - M ) = ( ( ( B + B ) / 2 ) - ( ( A + B ) / 2 ) ) ) |
79 |
2 2
|
addcld |
|- ( ph -> ( B + B ) e. CC ) |
80 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
81 |
79 80 71 73
|
divsubdird |
|- ( ph -> ( ( ( B + B ) - ( A + B ) ) / 2 ) = ( ( ( B + B ) / 2 ) - ( ( A + B ) / 2 ) ) ) |
82 |
2 1 2
|
pnpcan2d |
|- ( ph -> ( ( B + B ) - ( A + B ) ) = ( B - A ) ) |
83 |
82
|
oveq1d |
|- ( ph -> ( ( ( B + B ) - ( A + B ) ) / 2 ) = ( ( B - A ) / 2 ) ) |
84 |
78 81 83
|
3eqtr2d |
|- ( ph -> ( B - M ) = ( ( B - A ) / 2 ) ) |
85 |
13 71 73
|
divrec2d |
|- ( ph -> ( ( B - A ) / 2 ) = ( ( 1 / 2 ) x. ( B - A ) ) ) |
86 |
84 85
|
eqtrd |
|- ( ph -> ( B - M ) = ( ( 1 / 2 ) x. ( B - A ) ) ) |
87 |
86
|
fveq2d |
|- ( ph -> ( abs ` ( B - M ) ) = ( abs ` ( ( 1 / 2 ) x. ( B - A ) ) ) ) |
88 |
40 13
|
absmuld |
|- ( ph -> ( abs ` ( ( 1 / 2 ) x. ( B - A ) ) ) = ( ( abs ` ( 1 / 2 ) ) x. ( abs ` ( B - A ) ) ) ) |
89 |
|
0red |
|- ( ph -> 0 e. RR ) |
90 |
|
halfgt0 |
|- 0 < ( 1 / 2 ) |
91 |
90
|
a1i |
|- ( ph -> 0 < ( 1 / 2 ) ) |
92 |
89 42 91
|
ltled |
|- ( ph -> 0 <_ ( 1 / 2 ) ) |
93 |
42 92
|
absidd |
|- ( ph -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
94 |
93
|
oveq1d |
|- ( ph -> ( ( abs ` ( 1 / 2 ) ) x. ( abs ` ( B - A ) ) ) = ( ( 1 / 2 ) x. ( abs ` ( B - A ) ) ) ) |
95 |
87 88 94
|
3eqtrd |
|- ( ph -> ( abs ` ( B - M ) ) = ( ( 1 / 2 ) x. ( abs ` ( B - A ) ) ) ) |
96 |
95
|
oveq1d |
|- ( ph -> ( ( abs ` ( B - M ) ) ^ 2 ) = ( ( ( 1 / 2 ) x. ( abs ` ( B - A ) ) ) ^ 2 ) ) |
97 |
40 15
|
sqmuld |
|- ( ph -> ( ( ( 1 / 2 ) x. ( abs ` ( B - A ) ) ) ^ 2 ) = ( ( ( 1 / 2 ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
98 |
96 97
|
eqtrd |
|- ( ph -> ( ( abs ` ( B - M ) ) ^ 2 ) = ( ( ( 1 / 2 ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
99 |
40 16 13
|
subdird |
|- ( ph -> ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) = ( ( ( 1 / 2 ) x. ( B - A ) ) - ( X x. ( B - A ) ) ) ) |
100 |
86 31
|
oveq12d |
|- ( ph -> ( ( B - M ) - ( B - P ) ) = ( ( ( 1 / 2 ) x. ( B - A ) ) - ( X x. ( B - A ) ) ) ) |
101 |
80
|
halfcld |
|- ( ph -> ( ( A + B ) / 2 ) e. CC ) |
102 |
4 101
|
eqeltrd |
|- ( ph -> M e. CC ) |
103 |
2 102 23
|
nnncan1d |
|- ( ph -> ( ( B - M ) - ( B - P ) ) = ( P - M ) ) |
104 |
99 100 103
|
3eqtr2rd |
|- ( ph -> ( P - M ) = ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) ) |
105 |
104
|
fveq2d |
|- ( ph -> ( abs ` ( P - M ) ) = ( abs ` ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) ) ) |
106 |
44 13
|
absmuld |
|- ( ph -> ( abs ` ( ( ( 1 / 2 ) - X ) x. ( B - A ) ) ) = ( ( abs ` ( ( 1 / 2 ) - X ) ) x. ( abs ` ( B - A ) ) ) ) |
107 |
105 106
|
eqtrd |
|- ( ph -> ( abs ` ( P - M ) ) = ( ( abs ` ( ( 1 / 2 ) - X ) ) x. ( abs ` ( B - A ) ) ) ) |
108 |
107
|
oveq1d |
|- ( ph -> ( ( abs ` ( P - M ) ) ^ 2 ) = ( ( ( abs ` ( ( 1 / 2 ) - X ) ) x. ( abs ` ( B - A ) ) ) ^ 2 ) ) |
109 |
46 15
|
sqmuld |
|- ( ph -> ( ( ( abs ` ( ( 1 / 2 ) - X ) ) x. ( abs ` ( B - A ) ) ) ^ 2 ) = ( ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
110 |
108 109
|
eqtrd |
|- ( ph -> ( ( abs ` ( P - M ) ) ^ 2 ) = ( ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
111 |
98 110
|
oveq12d |
|- ( ph -> ( ( ( abs ` ( B - M ) ) ^ 2 ) - ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( ( ( ( 1 / 2 ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) - ( ( ( abs ` ( ( 1 / 2 ) - X ) ) ^ 2 ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) ) |
112 |
49 70 111
|
3eqtr4rd |
|- ( ph -> ( ( ( abs ` ( B - M ) ) ^ 2 ) - ( ( abs ` ( P - M ) ) ^ 2 ) ) = ( ( ( abs ` ( 1 - X ) ) x. ( abs ` X ) ) x. ( ( abs ` ( B - A ) ) ^ 2 ) ) ) |
113 |
38 112
|
eqtr4d |
|- ( ph -> ( ( abs ` ( P - A ) ) x. ( abs ` ( P - B ) ) ) = ( ( ( abs ` ( B - M ) ) ^ 2 ) - ( ( abs ` ( P - M ) ) ^ 2 ) ) ) |