Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|- 1 e. RR |
2 |
|
chpval |
|- ( 1 e. RR -> ( psi ` 1 ) = sum_ x e. ( 1 ... ( |_ ` 1 ) ) ( Lam ` x ) ) |
3 |
1 2
|
ax-mp |
|- ( psi ` 1 ) = sum_ x e. ( 1 ... ( |_ ` 1 ) ) ( Lam ` x ) |
4 |
|
elfz1eq |
|- ( x e. ( 1 ... 1 ) -> x = 1 ) |
5 |
4
|
fveq2d |
|- ( x e. ( 1 ... 1 ) -> ( Lam ` x ) = ( Lam ` 1 ) ) |
6 |
|
vma1 |
|- ( Lam ` 1 ) = 0 |
7 |
5 6
|
eqtrdi |
|- ( x e. ( 1 ... 1 ) -> ( Lam ` x ) = 0 ) |
8 |
|
1z |
|- 1 e. ZZ |
9 |
|
flid |
|- ( 1 e. ZZ -> ( |_ ` 1 ) = 1 ) |
10 |
8 9
|
ax-mp |
|- ( |_ ` 1 ) = 1 |
11 |
10
|
oveq2i |
|- ( 1 ... ( |_ ` 1 ) ) = ( 1 ... 1 ) |
12 |
7 11
|
eleq2s |
|- ( x e. ( 1 ... ( |_ ` 1 ) ) -> ( Lam ` x ) = 0 ) |
13 |
12
|
sumeq2i |
|- sum_ x e. ( 1 ... ( |_ ` 1 ) ) ( Lam ` x ) = sum_ x e. ( 1 ... ( |_ ` 1 ) ) 0 |
14 |
|
fzfi |
|- ( 1 ... ( |_ ` 1 ) ) e. Fin |
15 |
14
|
olci |
|- ( ( 1 ... ( |_ ` 1 ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` 1 ) ) e. Fin ) |
16 |
|
sumz |
|- ( ( ( 1 ... ( |_ ` 1 ) ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... ( |_ ` 1 ) ) e. Fin ) -> sum_ x e. ( 1 ... ( |_ ` 1 ) ) 0 = 0 ) |
17 |
15 16
|
ax-mp |
|- sum_ x e. ( 1 ... ( |_ ` 1 ) ) 0 = 0 |
18 |
3 13 17
|
3eqtri |
|- ( psi ` 1 ) = 0 |