Step |
Hyp |
Ref |
Expression |
1 |
|
1red |
|- ( T. -> 1 e. RR ) |
2 |
|
1red |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 e. RR ) |
3 |
|
2re |
|- 2 e. RR |
4 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
5 |
3 4
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
6 |
5
|
simplbi |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
7 |
6
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. RR ) |
8 |
|
0red |
|- ( x e. ( 2 [,) +oo ) -> 0 e. RR ) |
9 |
3
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 2 e. RR ) |
10 |
|
2pos |
|- 0 < 2 |
11 |
10
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 0 < 2 ) |
12 |
5
|
simprbi |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
13 |
8 9 6 11 12
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 0 < x ) |
14 |
6 13
|
elrpd |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
15 |
14
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. RR+ ) |
16 |
15
|
rpge0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 0 <_ x ) |
17 |
7 16
|
resqrtcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( sqrt ` x ) e. RR ) |
18 |
15
|
relogcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( log ` x ) e. RR ) |
19 |
17 18
|
remulcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) x. ( log ` x ) ) e. RR ) |
20 |
12
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 2 <_ x ) |
21 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
22 |
7 20 21
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. RR+ ) |
23 |
19 22
|
rerpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. RR ) |
24 |
6
|
ssriv |
|- ( 2 [,) +oo ) C_ RR |
25 |
1
|
recnd |
|- ( T. -> 1 e. CC ) |
26 |
|
rlimconst |
|- ( ( ( 2 [,) +oo ) C_ RR /\ 1 e. CC ) -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
27 |
24 25 26
|
sylancr |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> 1 ) ~~>r 1 ) |
28 |
|
ovexd |
|- ( T. -> ( 2 [,) +oo ) e. _V ) |
29 |
7 22
|
rerpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x / ( theta ` x ) ) e. RR ) |
30 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) e. _V ) |
31 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) ) |
32 |
7
|
recnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x e. CC ) |
33 |
|
cxpsqrt |
|- ( x e. CC -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
34 |
32 33
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( x ^c ( 1 / 2 ) ) = ( sqrt ` x ) ) |
35 |
34
|
oveq2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) = ( ( log ` x ) / ( sqrt ` x ) ) ) |
36 |
18
|
recnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( log ` x ) e. CC ) |
37 |
15
|
rpsqrtcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( sqrt ` x ) e. RR+ ) |
38 |
37
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) e. CC /\ ( sqrt ` x ) =/= 0 ) ) |
39 |
|
divcan5 |
|- ( ( ( log ` x ) e. CC /\ ( ( sqrt ` x ) e. CC /\ ( sqrt ` x ) =/= 0 ) /\ ( ( sqrt ` x ) e. CC /\ ( sqrt ` x ) =/= 0 ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( ( sqrt ` x ) x. ( sqrt ` x ) ) ) = ( ( log ` x ) / ( sqrt ` x ) ) ) |
40 |
36 38 38 39
|
syl3anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( ( sqrt ` x ) x. ( sqrt ` x ) ) ) = ( ( log ` x ) / ( sqrt ` x ) ) ) |
41 |
|
remsqsqrt |
|- ( ( x e. RR /\ 0 <_ x ) -> ( ( sqrt ` x ) x. ( sqrt ` x ) ) = x ) |
42 |
7 16 41
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) x. ( sqrt ` x ) ) = x ) |
43 |
42
|
oveq2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( ( sqrt ` x ) x. ( sqrt ` x ) ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) |
44 |
35 40 43
|
3eqtr2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) |
45 |
44
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) ) |
46 |
28 29 30 31 45
|
offval2 |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) ) ) |
47 |
15
|
rpne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> x =/= 0 ) |
48 |
22
|
rpcnne0d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) |
49 |
19
|
recnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( sqrt ` x ) x. ( log ` x ) ) e. CC ) |
50 |
|
dmdcan |
|- ( ( ( x e. CC /\ x =/= 0 ) /\ ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( ( sqrt ` x ) x. ( log ` x ) ) e. CC ) -> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
51 |
32 47 48 49 50
|
syl211anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) = ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) |
52 |
51
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( x / ( theta ` x ) ) x. ( ( ( sqrt ` x ) x. ( log ` x ) ) / x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
53 |
46 52
|
eqtrd |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
54 |
|
chto1lb |
|- ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) e. O(1) |
55 |
14
|
ssriv |
|- ( 2 [,) +oo ) C_ RR+ |
56 |
55
|
a1i |
|- ( T. -> ( 2 [,) +oo ) C_ RR+ ) |
57 |
|
1rp |
|- 1 e. RR+ |
58 |
|
rphalfcl |
|- ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) |
59 |
57 58
|
ax-mp |
|- ( 1 / 2 ) e. RR+ |
60 |
|
cxploglim |
|- ( ( 1 / 2 ) e. RR+ -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) |
61 |
59 60
|
ax-mp |
|- ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 |
62 |
61
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) |
63 |
56 62
|
rlimres2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) |
64 |
|
o1rlimmul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ~~>r 0 ) -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) ~~>r 0 ) |
65 |
54 63 64
|
sylancr |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( x / ( theta ` x ) ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( log ` x ) / ( x ^c ( 1 / 2 ) ) ) ) ) ~~>r 0 ) |
66 |
53 65
|
eqbrtrrd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ~~>r 0 ) |
67 |
2 23 27 66
|
rlimadd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) ~~>r ( 1 + 0 ) ) |
68 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
69 |
67 68
|
breqtrdi |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) ~~>r 1 ) |
70 |
|
1re |
|- 1 e. RR |
71 |
|
readdcl |
|- ( ( 1 e. RR /\ ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) e. RR ) -> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) e. RR ) |
72 |
70 23 71
|
sylancr |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) e. RR ) |
73 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
74 |
7 73
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( psi ` x ) e. RR ) |
75 |
74 22
|
rerpdivcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) e. RR ) |
76 |
|
chtcl |
|- ( x e. RR -> ( theta ` x ) e. RR ) |
77 |
7 76
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. RR ) |
78 |
77 19
|
readdcld |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) e. RR ) |
79 |
3
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 2 e. RR ) |
80 |
|
1le2 |
|- 1 <_ 2 |
81 |
80
|
a1i |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 <_ 2 ) |
82 |
2 79 7 81 20
|
letrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 <_ x ) |
83 |
|
chpub |
|- ( ( x e. RR /\ 1 <_ x ) -> ( psi ` x ) <_ ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) ) |
84 |
7 82 83
|
syl2anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( psi ` x ) <_ ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) ) |
85 |
74 78 22 84
|
lediv1dd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) <_ ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) ) |
86 |
22
|
rpcnd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) e. CC ) |
87 |
|
divdir |
|- ( ( ( theta ` x ) e. CC /\ ( ( sqrt ` x ) x. ( log ` x ) ) e. CC /\ ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) -> ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) = ( ( ( theta ` x ) / ( theta ` x ) ) + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
88 |
86 49 48 87
|
syl3anc |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) = ( ( ( theta ` x ) / ( theta ` x ) ) + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
89 |
|
divid |
|- ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) -> ( ( theta ` x ) / ( theta ` x ) ) = 1 ) |
90 |
48 89
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / ( theta ` x ) ) = 1 ) |
91 |
90
|
oveq1d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / ( theta ` x ) ) + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) = ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
92 |
88 91
|
eqtrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) + ( ( sqrt ` x ) x. ( log ` x ) ) ) / ( theta ` x ) ) = ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
93 |
85 92
|
breqtrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) <_ ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
94 |
93
|
adantrr |
|- ( ( T. /\ ( x e. ( 2 [,) +oo ) /\ 1 <_ x ) ) -> ( ( psi ` x ) / ( theta ` x ) ) <_ ( 1 + ( ( ( sqrt ` x ) x. ( log ` x ) ) / ( theta ` x ) ) ) ) |
95 |
86
|
mulid2d |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 x. ( theta ` x ) ) = ( theta ` x ) ) |
96 |
|
chtlepsi |
|- ( x e. RR -> ( theta ` x ) <_ ( psi ` x ) ) |
97 |
7 96
|
syl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( theta ` x ) <_ ( psi ` x ) ) |
98 |
95 97
|
eqbrtrd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( 1 x. ( theta ` x ) ) <_ ( psi ` x ) ) |
99 |
2 74 22
|
lemuldivd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( 1 x. ( theta ` x ) ) <_ ( psi ` x ) <-> 1 <_ ( ( psi ` x ) / ( theta ` x ) ) ) ) |
100 |
98 99
|
mpbid |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> 1 <_ ( ( psi ` x ) / ( theta ` x ) ) ) |
101 |
100
|
adantrr |
|- ( ( T. /\ ( x e. ( 2 [,) +oo ) /\ 1 <_ x ) ) -> 1 <_ ( ( psi ` x ) / ( theta ` x ) ) ) |
102 |
1 1 69 72 75 94 101
|
rlimsqz2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 ) |
103 |
102
|
mptru |
|- ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 |