| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chpdmat.c | 
							 |-  C = ( N CharPlyMat R )  | 
						
						
							| 2 | 
							
								
							 | 
							chpdmat.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							chpdmat.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 4 | 
							
								
							 | 
							chpdmat.s | 
							 |-  S = ( algSc ` P )  | 
						
						
							| 5 | 
							
								
							 | 
							chpdmat.b | 
							 |-  B = ( Base ` A )  | 
						
						
							| 6 | 
							
								
							 | 
							chpdmat.x | 
							 |-  X = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							chpdmat.0 | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							chpdmat.g | 
							 |-  G = ( mulGrp ` P )  | 
						
						
							| 9 | 
							
								
							 | 
							chpdmat.m | 
							 |-  .- = ( -g ` P )  | 
						
						
							| 10 | 
							
								
							 | 
							chpdmatlem.q | 
							 |-  Q = ( N Mat P )  | 
						
						
							| 11 | 
							
								
							 | 
							chpdmatlem.1 | 
							 |-  .1. = ( 1r ` Q )  | 
						
						
							| 12 | 
							
								
							 | 
							chpdmatlem.m | 
							 |-  .x. = ( .s ` Q )  | 
						
						
							| 13 | 
							
								2 10
							 | 
							pmatlmod | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. LMod )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` P ) = ( Base ` P )  | 
						
						
							| 15 | 
							
								6 2 14
							 | 
							vr1cl | 
							 |-  ( R e. Ring -> X e. ( Base ` P ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							adantl | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` P ) )  | 
						
						
							| 17 | 
							
								2
							 | 
							ply1ring | 
							 |-  ( R e. Ring -> P e. Ring )  | 
						
						
							| 18 | 
							
								10
							 | 
							matsca2 | 
							 |-  ( ( N e. Fin /\ P e. Ring ) -> P = ( Scalar ` Q ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							sylan2 | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> P = ( Scalar ` Q ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eqcomd | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( Scalar ` Q ) = P )  | 
						
						
							| 21 | 
							
								20
							 | 
							fveq2d | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( Base ` ( Scalar ` Q ) ) = ( Base ` P ) )  | 
						
						
							| 22 | 
							
								16 21
							 | 
							eleqtrrd | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` ( Scalar ` Q ) ) )  | 
						
						
							| 23 | 
							
								2 10
							 | 
							pmatring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` Q ) = ( Base ` Q )  | 
						
						
							| 25 | 
							
								24 11
							 | 
							ringidcl | 
							 |-  ( Q e. Ring -> .1. e. ( Base ` Q ) )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` Q ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eqid | 
							 |-  ( Scalar ` Q ) = ( Scalar ` Q )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( Scalar ` Q ) ) = ( Base ` ( Scalar ` Q ) )  | 
						
						
							| 29 | 
							
								24 27 12 28
							 | 
							lmodvscl | 
							 |-  ( ( Q e. LMod /\ X e. ( Base ` ( Scalar ` Q ) ) /\ .1. e. ( Base ` Q ) ) -> ( X .x. .1. ) e. ( Base ` Q ) )  | 
						
						
							| 30 | 
							
								13 22 26 29
							 | 
							syl3anc | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) )  |