| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chpdmat.c | 
							 |-  C = ( N CharPlyMat R )  | 
						
						
							| 2 | 
							
								
							 | 
							chpdmat.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							chpdmat.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 4 | 
							
								
							 | 
							chpdmat.s | 
							 |-  S = ( algSc ` P )  | 
						
						
							| 5 | 
							
								
							 | 
							chpdmat.b | 
							 |-  B = ( Base ` A )  | 
						
						
							| 6 | 
							
								
							 | 
							chpdmat.x | 
							 |-  X = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							chpdmat.0 | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							chpdmat.g | 
							 |-  G = ( mulGrp ` P )  | 
						
						
							| 9 | 
							
								
							 | 
							chpdmat.m | 
							 |-  .- = ( -g ` P )  | 
						
						
							| 10 | 
							
								
							 | 
							chpdmatlem.q | 
							 |-  Q = ( N Mat P )  | 
						
						
							| 11 | 
							
								
							 | 
							chpdmatlem.1 | 
							 |-  .1. = ( 1r ` Q )  | 
						
						
							| 12 | 
							
								
							 | 
							chpdmatlem.m | 
							 |-  .x. = ( .s ` Q )  | 
						
						
							| 13 | 
							
								
							 | 
							chpdmatlem.z | 
							 |-  Z = ( -g ` Q )  | 
						
						
							| 14 | 
							
								
							 | 
							chpdmatlem.t | 
							 |-  T = ( N matToPolyMat R )  | 
						
						
							| 15 | 
							
								2 10
							 | 
							pmatring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )  | 
						
						
							| 16 | 
							
								15
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring )  | 
						
						
							| 17 | 
							
								
							 | 
							ringgrp | 
							 |-  ( Q e. Ring -> Q e. Grp )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Grp )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							chpdmatlem0 | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) )  | 
						
						
							| 21 | 
							
								14 3 5 2 10
							 | 
							mat2pmatbas | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` Q ) = ( Base ` Q )  | 
						
						
							| 23 | 
							
								22 13
							 | 
							grpsubcl | 
							 |-  ( ( Q e. Grp /\ ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) )  | 
						
						
							| 24 | 
							
								18 20 21 23
							 | 
							syl3anc | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) )  |