Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chpdmat.p |
|- P = ( Poly1 ` R ) |
3 |
|
chpdmat.a |
|- A = ( N Mat R ) |
4 |
|
chpdmat.s |
|- S = ( algSc ` P ) |
5 |
|
chpdmat.b |
|- B = ( Base ` A ) |
6 |
|
chpdmat.x |
|- X = ( var1 ` R ) |
7 |
|
chpdmat.0 |
|- .0. = ( 0g ` R ) |
8 |
|
chpdmat.g |
|- G = ( mulGrp ` P ) |
9 |
|
chpdmat.m |
|- .- = ( -g ` P ) |
10 |
|
chpdmatlem.q |
|- Q = ( N Mat P ) |
11 |
|
chpdmatlem.1 |
|- .1. = ( 1r ` Q ) |
12 |
|
chpdmatlem.m |
|- .x. = ( .s ` Q ) |
13 |
|
chpdmatlem.z |
|- Z = ( -g ` Q ) |
14 |
|
chpdmatlem.t |
|- T = ( N matToPolyMat R ) |
15 |
2 10
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) |
16 |
15
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring ) |
17 |
|
ringgrp |
|- ( Q e. Ring -> Q e. Grp ) |
18 |
16 17
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Grp ) |
19 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
20 |
19
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
21 |
14 3 5 2 10
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) ) |
22 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
23 |
22 13
|
grpsubcl |
|- ( ( Q e. Grp /\ ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) ) |
24 |
18 20 21 23
|
syl3anc |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) Z ( T ` M ) ) e. ( Base ` Q ) ) |