Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chpdmat.p |
|- P = ( Poly1 ` R ) |
3 |
|
chpdmat.a |
|- A = ( N Mat R ) |
4 |
|
chpdmat.s |
|- S = ( algSc ` P ) |
5 |
|
chpdmat.b |
|- B = ( Base ` A ) |
6 |
|
chpdmat.x |
|- X = ( var1 ` R ) |
7 |
|
chpdmat.0 |
|- .0. = ( 0g ` R ) |
8 |
|
chpdmat.g |
|- G = ( mulGrp ` P ) |
9 |
|
chpdmat.m |
|- .- = ( -g ` P ) |
10 |
|
chpdmatlem.q |
|- Q = ( N Mat P ) |
11 |
|
chpdmatlem.1 |
|- .1. = ( 1r ` Q ) |
12 |
|
chpdmatlem.m |
|- .x. = ( .s ` Q ) |
13 |
|
chpdmatlem.z |
|- Z = ( -g ` Q ) |
14 |
|
chpdmatlem.t |
|- T = ( N matToPolyMat R ) |
15 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
16 |
15
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. Ring ) |
17 |
16
|
ad4antr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> P e. Ring ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
19 |
18
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
20 |
19
|
ad4antr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
21 |
14 3 5 2 10
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) ) |
22 |
21
|
ad4antr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( T ` M ) e. ( Base ` Q ) ) |
23 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) -> i e. N ) |
24 |
23
|
anim1i |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i e. N /\ j e. N ) ) |
25 |
24
|
ad2antrr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i e. N /\ j e. N ) ) |
26 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
27 |
10 26 13 9
|
matsubgcell |
|- ( ( P e. Ring /\ ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) ) |
28 |
17 20 22 25 27
|
syl121anc |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) ) |
29 |
16
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> P e. Ring ) |
30 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
31 |
6 2 30
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
32 |
31
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> X e. ( Base ` P ) ) |
33 |
2 10
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) |
34 |
33
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring ) |
35 |
26 11
|
ringidcl |
|- ( Q e. Ring -> .1. e. ( Base ` Q ) ) |
36 |
34 35
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> .1. e. ( Base ` Q ) ) |
37 |
32 36
|
jca |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) |
38 |
37
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) |
39 |
29 38 24
|
3jca |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) ) |
40 |
39
|
ad2antrr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) ) |
41 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
42 |
10 26 30 12 41
|
matvscacell |
|- ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) -> ( i ( X .x. .1. ) j ) = ( X ( .r ` P ) ( i .1. j ) ) ) |
43 |
40 42
|
syl |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( X .x. .1. ) j ) = ( X ( .r ` P ) ( i .1. j ) ) ) |
44 |
43
|
oveq1d |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) = ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) ) |
45 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
46 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
47 |
|
simpll1 |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> N e. Fin ) |
48 |
23
|
adantr |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> i e. N ) |
49 |
|
simpr |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> j e. N ) |
50 |
10 45 46 47 29 48 49 11
|
mat1ov |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i .1. j ) = if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) ) |
51 |
|
ifnefalse |
|- ( i =/= j -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = ( 0g ` P ) ) |
52 |
50 51
|
sylan9eq |
|- ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( i .1. j ) = ( 0g ` P ) ) |
53 |
52
|
oveq2d |
|- ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( X ( .r ` P ) ( 0g ` P ) ) ) |
54 |
15 31
|
jca |
|- ( R e. Ring -> ( P e. Ring /\ X e. ( Base ` P ) ) ) |
55 |
54
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Ring /\ X e. ( Base ` P ) ) ) |
56 |
30 41 46
|
ringrz |
|- ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) |
57 |
55 56
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) |
58 |
57
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) |
59 |
58
|
ad2antrr |
|- ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) ) |
60 |
53 59
|
eqtrd |
|- ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( 0g ` P ) ) |
61 |
60
|
adantr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( 0g ` P ) ) |
62 |
|
simpll |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( N e. Fin /\ R e. Ring /\ M e. B ) ) |
63 |
62 24
|
jca |
|- ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) ) |
64 |
63
|
ad2antrr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) ) |
65 |
14 3 5 2 4
|
mat2pmatvalel |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) -> ( i ( T ` M ) j ) = ( S ` ( i M j ) ) ) |
66 |
64 65
|
syl |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( T ` M ) j ) = ( S ` ( i M j ) ) ) |
67 |
61 66
|
oveq12d |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) = ( ( 0g ` P ) .- ( S ` ( i M j ) ) ) ) |
68 |
|
fveq2 |
|- ( ( i M j ) = .0. -> ( S ` ( i M j ) ) = ( S ` .0. ) ) |
69 |
68
|
adantl |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` ( i M j ) ) = ( S ` .0. ) ) |
70 |
2 4 7 46
|
ply1scl0 |
|- ( R e. Ring -> ( S ` .0. ) = ( 0g ` P ) ) |
71 |
70
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( S ` .0. ) = ( 0g ` P ) ) |
72 |
71
|
ad4antr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` .0. ) = ( 0g ` P ) ) |
73 |
69 72
|
eqtrd |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` ( i M j ) ) = ( 0g ` P ) ) |
74 |
73
|
oveq2d |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( 0g ` P ) .- ( S ` ( i M j ) ) ) = ( ( 0g ` P ) .- ( 0g ` P ) ) ) |
75 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
76 |
15 75
|
syl |
|- ( R e. Ring -> P e. Grp ) |
77 |
30 46
|
grpidcl |
|- ( P e. Grp -> ( 0g ` P ) e. ( Base ` P ) ) |
78 |
76 77
|
jccir |
|- ( R e. Ring -> ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) ) |
79 |
78
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) ) |
80 |
30 46 9
|
grpsubid |
|- ( ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) ) |
81 |
79 80
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) ) |
82 |
81
|
ad4antr |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) ) |
83 |
67 74 82
|
3eqtrd |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) = ( 0g ` P ) ) |
84 |
28 44 83
|
3eqtrd |
|- ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( 0g ` P ) ) |