| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chpdmat.c | 
							 |-  C = ( N CharPlyMat R )  | 
						
						
							| 2 | 
							
								
							 | 
							chpdmat.p | 
							 |-  P = ( Poly1 ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							chpdmat.a | 
							 |-  A = ( N Mat R )  | 
						
						
							| 4 | 
							
								
							 | 
							chpdmat.s | 
							 |-  S = ( algSc ` P )  | 
						
						
							| 5 | 
							
								
							 | 
							chpdmat.b | 
							 |-  B = ( Base ` A )  | 
						
						
							| 6 | 
							
								
							 | 
							chpdmat.x | 
							 |-  X = ( var1 ` R )  | 
						
						
							| 7 | 
							
								
							 | 
							chpdmat.0 | 
							 |-  .0. = ( 0g ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							chpdmat.g | 
							 |-  G = ( mulGrp ` P )  | 
						
						
							| 9 | 
							
								
							 | 
							chpdmat.m | 
							 |-  .- = ( -g ` P )  | 
						
						
							| 10 | 
							
								
							 | 
							chpdmatlem.q | 
							 |-  Q = ( N Mat P )  | 
						
						
							| 11 | 
							
								
							 | 
							chpdmatlem.1 | 
							 |-  .1. = ( 1r ` Q )  | 
						
						
							| 12 | 
							
								
							 | 
							chpdmatlem.m | 
							 |-  .x. = ( .s ` Q )  | 
						
						
							| 13 | 
							
								
							 | 
							chpdmatlem.z | 
							 |-  Z = ( -g ` Q )  | 
						
						
							| 14 | 
							
								
							 | 
							chpdmatlem.t | 
							 |-  T = ( N matToPolyMat R )  | 
						
						
							| 15 | 
							
								2
							 | 
							ply1ring | 
							 |-  ( R e. Ring -> P e. Ring )  | 
						
						
							| 16 | 
							
								15
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. Ring )  | 
						
						
							| 17 | 
							
								16
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> P e. Ring )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							chpdmatlem0 | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( X .x. .1. ) e. ( Base ` Q ) )  | 
						
						
							| 21 | 
							
								14 3 5 2 10
							 | 
							mat2pmatbas | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( T ` M ) e. ( Base ` Q ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) -> i e. N )  | 
						
						
							| 24 | 
							
								23
							 | 
							anim1i | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i e. N /\ j e. N ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i e. N /\ j e. N ) )  | 
						
						
							| 26 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` Q ) = ( Base ` Q )  | 
						
						
							| 27 | 
							
								10 26 13 9
							 | 
							matsubgcell | 
							 |-  ( ( P e. Ring /\ ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) )  | 
						
						
							| 28 | 
							
								17 20 22 25 27
							 | 
							syl121anc | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) )  | 
						
						
							| 29 | 
							
								16
							 | 
							ad2antrr | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> P e. Ring )  | 
						
						
							| 30 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` P ) = ( Base ` P )  | 
						
						
							| 31 | 
							
								6 2 30
							 | 
							vr1cl | 
							 |-  ( R e. Ring -> X e. ( Base ` P ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> X e. ( Base ` P ) )  | 
						
						
							| 33 | 
							
								2 10
							 | 
							pmatring | 
							 |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. Ring )  | 
						
						
							| 35 | 
							
								26 11
							 | 
							ringidcl | 
							 |-  ( Q e. Ring -> .1. e. ( Base ` Q ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> .1. e. ( Base ` Q ) )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							jca | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ad2antrr | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) )  | 
						
						
							| 39 | 
							
								29 38 24
							 | 
							3jca | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` P ) = ( .r ` P )  | 
						
						
							| 42 | 
							
								10 26 30 12 41
							 | 
							matvscacell | 
							 |-  ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( i e. N /\ j e. N ) ) -> ( i ( X .x. .1. ) j ) = ( X ( .r ` P ) ( i .1. j ) ) )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							syl | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( X .x. .1. ) j ) = ( X ( .r ` P ) ( i .1. j ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							oveq1d | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( i ( X .x. .1. ) j ) .- ( i ( T ` M ) j ) ) = ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` P ) = ( 1r ` P )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` P ) = ( 0g ` P )  | 
						
						
							| 47 | 
							
								
							 | 
							simpll1 | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> N e. Fin )  | 
						
						
							| 48 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> i e. N )  | 
						
						
							| 49 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> j e. N )  | 
						
						
							| 50 | 
							
								10 45 46 47 29 48 49 11
							 | 
							mat1ov | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( i .1. j ) = if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							ifnefalse | 
							 |-  ( i =/= j -> if ( i = j , ( 1r ` P ) , ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 52 | 
							
								50 51
							 | 
							sylan9eq | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( i .1. j ) = ( 0g ` P ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( X ( .r ` P ) ( 0g ` P ) ) )  | 
						
						
							| 54 | 
							
								15 31
							 | 
							jca | 
							 |-  ( R e. Ring -> ( P e. Ring /\ X e. ( Base ` P ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Ring /\ X e. ( Base ` P ) ) )  | 
						
						
							| 56 | 
							
								30 41 46
							 | 
							ringrz | 
							 |-  ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantr | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 60 | 
							
								53 59
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( 0g ` P ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( X ( .r ` P ) ( i .1. j ) ) = ( 0g ` P ) )  | 
						
						
							| 62 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( N e. Fin /\ R e. Ring /\ M e. B ) )  | 
						
						
							| 63 | 
							
								62 24
							 | 
							jca | 
							 |-  ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) )  | 
						
						
							| 65 | 
							
								14 3 5 2 4
							 | 
							mat2pmatvalel | 
							 |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( i e. N /\ j e. N ) ) -> ( i ( T ` M ) j ) = ( S ` ( i M j ) ) )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							syl | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( T ` M ) j ) = ( S ` ( i M j ) ) )  | 
						
						
							| 67 | 
							
								61 66
							 | 
							oveq12d | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) = ( ( 0g ` P ) .- ( S ` ( i M j ) ) ) )  | 
						
						
							| 68 | 
							
								
							 | 
							fveq2 | 
							 |-  ( ( i M j ) = .0. -> ( S ` ( i M j ) ) = ( S ` .0. ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantl | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` ( i M j ) ) = ( S ` .0. ) )  | 
						
						
							| 70 | 
							
								2 4 7 46
							 | 
							ply1scl0 | 
							 |-  ( R e. Ring -> ( S ` .0. ) = ( 0g ` P ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( S ` .0. ) = ( 0g ` P ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` .0. ) = ( 0g ` P ) )  | 
						
						
							| 73 | 
							
								69 72
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( S ` ( i M j ) ) = ( 0g ` P ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( 0g ` P ) .- ( S ` ( i M j ) ) ) = ( ( 0g ` P ) .- ( 0g ` P ) ) )  | 
						
						
							| 75 | 
							
								
							 | 
							ringgrp | 
							 |-  ( P e. Ring -> P e. Grp )  | 
						
						
							| 76 | 
							
								15 75
							 | 
							syl | 
							 |-  ( R e. Ring -> P e. Grp )  | 
						
						
							| 77 | 
							
								30 46
							 | 
							grpidcl | 
							 |-  ( P e. Grp -> ( 0g ` P ) e. ( Base ` P ) )  | 
						
						
							| 78 | 
							
								76 77
							 | 
							jccir | 
							 |-  ( R e. Ring -> ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2ant2 | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) )  | 
						
						
							| 80 | 
							
								30 46 9
							 | 
							grpsubid | 
							 |-  ( ( P e. Grp /\ ( 0g ` P ) e. ( Base ` P ) ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 81 | 
							
								79 80
							 | 
							syl | 
							 |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							ad4antr | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( 0g ` P ) .- ( 0g ` P ) ) = ( 0g ` P ) )  | 
						
						
							| 83 | 
							
								67 74 82
							 | 
							3eqtrd | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( ( X ( .r ` P ) ( i .1. j ) ) .- ( i ( T ` M ) j ) ) = ( 0g ` P ) )  | 
						
						
							| 84 | 
							
								28 44 83
							 | 
							3eqtrd | 
							 |-  ( ( ( ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ i e. N ) /\ j e. N ) /\ i =/= j ) /\ ( i M j ) = .0. ) -> ( i ( ( X .x. .1. ) Z ( T ` M ) ) j ) = ( 0g ` P ) )  |