Step |
Hyp |
Ref |
Expression |
1 |
|
chpdmat.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chpdmat.p |
|- P = ( Poly1 ` R ) |
3 |
|
chpdmat.a |
|- A = ( N Mat R ) |
4 |
|
chpdmat.s |
|- S = ( algSc ` P ) |
5 |
|
chpdmat.b |
|- B = ( Base ` A ) |
6 |
|
chpdmat.x |
|- X = ( var1 ` R ) |
7 |
|
chpdmat.0 |
|- .0. = ( 0g ` R ) |
8 |
|
chpdmat.g |
|- G = ( mulGrp ` P ) |
9 |
|
chpdmat.m |
|- .- = ( -g ` P ) |
10 |
|
chpdmatlem.q |
|- Q = ( N Mat P ) |
11 |
|
chpdmatlem.1 |
|- .1. = ( 1r ` Q ) |
12 |
|
chpdmatlem.m |
|- .x. = ( .s ` Q ) |
13 |
|
chpdmatlem.z |
|- Z = ( -g ` Q ) |
14 |
|
chpdmatlem.t |
|- T = ( N matToPolyMat R ) |
15 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
16 |
15
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> P e. Ring ) |
17 |
16
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> P e. Ring ) |
18 |
1 2 3 4 5 6 7 8 9 10 11 12
|
chpdmatlem0 |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
19 |
18
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X .x. .1. ) e. ( Base ` Q ) ) |
20 |
14 3 5 2 10
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` Q ) ) |
21 |
19 20
|
jca |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) ) |
22 |
21
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) ) |
23 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> K e. N ) |
24 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
25 |
10 24 13 9
|
matsubgcell |
|- ( ( P e. Ring /\ ( ( X .x. .1. ) e. ( Base ` Q ) /\ ( T ` M ) e. ( Base ` Q ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( ( X .x. .1. ) Z ( T ` M ) ) K ) = ( ( K ( X .x. .1. ) K ) .- ( K ( T ` M ) K ) ) ) |
26 |
17 22 23 23 25
|
syl112anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( ( X .x. .1. ) Z ( T ` M ) ) K ) = ( ( K ( X .x. .1. ) K ) .- ( K ( T ` M ) K ) ) ) |
27 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
28 |
6 2 27
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
29 |
28
|
adantl |
|- ( ( N e. Fin /\ R e. Ring ) -> X e. ( Base ` P ) ) |
30 |
2 10
|
pmatring |
|- ( ( N e. Fin /\ R e. Ring ) -> Q e. Ring ) |
31 |
24 11
|
ringidcl |
|- ( Q e. Ring -> .1. e. ( Base ` Q ) ) |
32 |
30 31
|
syl |
|- ( ( N e. Fin /\ R e. Ring ) -> .1. e. ( Base ` Q ) ) |
33 |
29 32
|
jca |
|- ( ( N e. Fin /\ R e. Ring ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) |
34 |
33
|
3adant3 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) |
35 |
34
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) ) |
36 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
37 |
10 24 27 12 36
|
matvscacell |
|- ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ .1. e. ( Base ` Q ) ) /\ ( K e. N /\ K e. N ) ) -> ( K ( X .x. .1. ) K ) = ( X ( .r ` P ) ( K .1. K ) ) ) |
38 |
17 35 23 23 37
|
syl112anc |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( X .x. .1. ) K ) = ( X ( .r ` P ) ( K .1. K ) ) ) |
39 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
40 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
41 |
|
simpl1 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> N e. Fin ) |
42 |
10 39 40 41 17 23 23 11
|
mat1ov |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K .1. K ) = if ( K = K , ( 1r ` P ) , ( 0g ` P ) ) ) |
43 |
|
eqid |
|- K = K |
44 |
43
|
iftruei |
|- if ( K = K , ( 1r ` P ) , ( 0g ` P ) ) = ( 1r ` P ) |
45 |
42 44
|
eqtrdi |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K .1. K ) = ( 1r ` P ) ) |
46 |
45
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( X ( .r ` P ) ( K .1. K ) ) = ( X ( .r ` P ) ( 1r ` P ) ) ) |
47 |
15 28
|
jca |
|- ( R e. Ring -> ( P e. Ring /\ X e. ( Base ` P ) ) ) |
48 |
47
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( P e. Ring /\ X e. ( Base ` P ) ) ) |
49 |
27 36 39
|
ringridm |
|- ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) |
50 |
48 49
|
syl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) |
51 |
50
|
adantr |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) |
52 |
38 46 51
|
3eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( X .x. .1. ) K ) = X ) |
53 |
14 3 5 2 4
|
mat2pmatvalel |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( K e. N /\ K e. N ) ) -> ( K ( T ` M ) K ) = ( S ` ( K M K ) ) ) |
54 |
53
|
anabsan2 |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( T ` M ) K ) = ( S ` ( K M K ) ) ) |
55 |
52 54
|
oveq12d |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( ( K ( X .x. .1. ) K ) .- ( K ( T ` M ) K ) ) = ( X .- ( S ` ( K M K ) ) ) ) |
56 |
26 55
|
eqtrd |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ K e. N ) -> ( K ( ( X .x. .1. ) Z ( T ` M ) ) K ) = ( X .- ( S ` ( K M K ) ) ) ) |