Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
lenlt |
|- ( ( 2 e. RR /\ A e. RR ) -> ( 2 <_ A <-> -. A < 2 ) ) |
3 |
1 2
|
mpan |
|- ( A e. RR -> ( 2 <_ A <-> -. A < 2 ) ) |
4 |
|
chprpcl |
|- ( ( A e. RR /\ 2 <_ A ) -> ( psi ` A ) e. RR+ ) |
5 |
4
|
rpne0d |
|- ( ( A e. RR /\ 2 <_ A ) -> ( psi ` A ) =/= 0 ) |
6 |
5
|
ex |
|- ( A e. RR -> ( 2 <_ A -> ( psi ` A ) =/= 0 ) ) |
7 |
3 6
|
sylbird |
|- ( A e. RR -> ( -. A < 2 -> ( psi ` A ) =/= 0 ) ) |
8 |
7
|
necon4bd |
|- ( A e. RR -> ( ( psi ` A ) = 0 -> A < 2 ) ) |
9 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
10 |
9
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) e. RR ) |
11 |
|
1red |
|- ( ( A e. RR /\ A < 2 ) -> 1 e. RR ) |
12 |
|
2z |
|- 2 e. ZZ |
13 |
|
fllt |
|- ( ( A e. RR /\ 2 e. ZZ ) -> ( A < 2 <-> ( |_ ` A ) < 2 ) ) |
14 |
12 13
|
mpan2 |
|- ( A e. RR -> ( A < 2 <-> ( |_ ` A ) < 2 ) ) |
15 |
14
|
biimpa |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) < 2 ) |
16 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
17 |
15 16
|
breqtrdi |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) < ( 1 + 1 ) ) |
18 |
|
flcl |
|- ( A e. RR -> ( |_ ` A ) e. ZZ ) |
19 |
18
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) e. ZZ ) |
20 |
|
1z |
|- 1 e. ZZ |
21 |
|
zleltp1 |
|- ( ( ( |_ ` A ) e. ZZ /\ 1 e. ZZ ) -> ( ( |_ ` A ) <_ 1 <-> ( |_ ` A ) < ( 1 + 1 ) ) ) |
22 |
19 20 21
|
sylancl |
|- ( ( A e. RR /\ A < 2 ) -> ( ( |_ ` A ) <_ 1 <-> ( |_ ` A ) < ( 1 + 1 ) ) ) |
23 |
17 22
|
mpbird |
|- ( ( A e. RR /\ A < 2 ) -> ( |_ ` A ) <_ 1 ) |
24 |
|
chpwordi |
|- ( ( ( |_ ` A ) e. RR /\ 1 e. RR /\ ( |_ ` A ) <_ 1 ) -> ( psi ` ( |_ ` A ) ) <_ ( psi ` 1 ) ) |
25 |
10 11 23 24
|
syl3anc |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` ( |_ ` A ) ) <_ ( psi ` 1 ) ) |
26 |
|
chpfl |
|- ( A e. RR -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) |
27 |
26
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` ( |_ ` A ) ) = ( psi ` A ) ) |
28 |
|
chp1 |
|- ( psi ` 1 ) = 0 |
29 |
28
|
a1i |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` 1 ) = 0 ) |
30 |
25 27 29
|
3brtr3d |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) <_ 0 ) |
31 |
|
chpge0 |
|- ( A e. RR -> 0 <_ ( psi ` A ) ) |
32 |
31
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> 0 <_ ( psi ` A ) ) |
33 |
|
chpcl |
|- ( A e. RR -> ( psi ` A ) e. RR ) |
34 |
33
|
adantr |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) e. RR ) |
35 |
|
0re |
|- 0 e. RR |
36 |
|
letri3 |
|- ( ( ( psi ` A ) e. RR /\ 0 e. RR ) -> ( ( psi ` A ) = 0 <-> ( ( psi ` A ) <_ 0 /\ 0 <_ ( psi ` A ) ) ) ) |
37 |
34 35 36
|
sylancl |
|- ( ( A e. RR /\ A < 2 ) -> ( ( psi ` A ) = 0 <-> ( ( psi ` A ) <_ 0 /\ 0 <_ ( psi ` A ) ) ) ) |
38 |
30 32 37
|
mpbir2and |
|- ( ( A e. RR /\ A < 2 ) -> ( psi ` A ) = 0 ) |
39 |
38
|
ex |
|- ( A e. RR -> ( A < 2 -> ( psi ` A ) = 0 ) ) |
40 |
8 39
|
impbid |
|- ( A e. RR -> ( ( psi ` A ) = 0 <-> A < 2 ) ) |