Step |
Hyp |
Ref |
Expression |
1 |
|
df-chp |
|- psi = ( x e. RR |-> sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) ) |
2 |
|
fzfid |
|- ( x e. RR -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
3 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
4 |
3
|
adantl |
|- ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
5 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
6 |
4 5
|
syl |
|- ( ( x e. RR /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( Lam ` n ) e. RR ) |
7 |
2 6
|
fsumrecl |
|- ( x e. RR -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( Lam ` n ) e. RR ) |
8 |
1 7
|
fmpti |
|- psi : RR --> RR |