| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ef0 |  |-  ( exp ` 0 ) = 1 | 
						
							| 2 |  | efchpcl |  |-  ( A e. RR -> ( exp ` ( psi ` A ) ) e. NN ) | 
						
							| 3 | 2 | nnge1d |  |-  ( A e. RR -> 1 <_ ( exp ` ( psi ` A ) ) ) | 
						
							| 4 | 1 3 | eqbrtrid |  |-  ( A e. RR -> ( exp ` 0 ) <_ ( exp ` ( psi ` A ) ) ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 |  | chpcl |  |-  ( A e. RR -> ( psi ` A ) e. RR ) | 
						
							| 7 |  | efle |  |-  ( ( 0 e. RR /\ ( psi ` A ) e. RR ) -> ( 0 <_ ( psi ` A ) <-> ( exp ` 0 ) <_ ( exp ` ( psi ` A ) ) ) ) | 
						
							| 8 | 5 6 7 | sylancr |  |-  ( A e. RR -> ( 0 <_ ( psi ` A ) <-> ( exp ` 0 ) <_ ( exp ` ( psi ` A ) ) ) ) | 
						
							| 9 | 4 8 | mpbird |  |-  ( A e. RR -> 0 <_ ( psi ` A ) ) |