| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
|- C = ( N CharPlyMat R ) |
| 2 |
|
chp0mat.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
chp0mat.a |
|- A = ( N Mat R ) |
| 4 |
|
chp0mat.x |
|- X = ( var1 ` R ) |
| 5 |
|
chp0mat.g |
|- G = ( mulGrp ` P ) |
| 6 |
|
chp0mat.m |
|- .^ = ( .g ` G ) |
| 7 |
|
chpidmat.i |
|- I = ( 1r ` A ) |
| 8 |
|
chpidmat.s |
|- S = ( algSc ` P ) |
| 9 |
|
chpidmat.1 |
|- .1. = ( 1r ` R ) |
| 10 |
|
chpidmat.m |
|- .- = ( -g ` P ) |
| 11 |
|
simpl |
|- ( ( N e. Fin /\ R e. CRing ) -> N e. Fin ) |
| 12 |
|
simpr |
|- ( ( N e. Fin /\ R e. CRing ) -> R e. CRing ) |
| 13 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 14 |
3
|
matring |
|- ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) |
| 15 |
13 14
|
sylan2 |
|- ( ( N e. Fin /\ R e. CRing ) -> A e. Ring ) |
| 16 |
|
eqid |
|- ( Base ` A ) = ( Base ` A ) |
| 17 |
16 7
|
ringidcl |
|- ( A e. Ring -> I e. ( Base ` A ) ) |
| 18 |
15 17
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> I e. ( Base ` A ) ) |
| 19 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 20 |
11
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> N e. Fin ) |
| 21 |
13
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> R e. Ring ) |
| 22 |
21
|
ad2antrr |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> R e. Ring ) |
| 23 |
|
simplrl |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> i e. N ) |
| 24 |
|
simplrr |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> j e. N ) |
| 25 |
3 9 19 20 22 23 24 7
|
mat1ov |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> ( i I j ) = if ( i = j , .1. , ( 0g ` R ) ) ) |
| 26 |
|
ifnefalse |
|- ( i =/= j -> if ( i = j , .1. , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 27 |
26
|
adantl |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> if ( i = j , .1. , ( 0g ` R ) ) = ( 0g ` R ) ) |
| 28 |
25 27
|
eqtrd |
|- ( ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) /\ i =/= j ) -> ( i I j ) = ( 0g ` R ) ) |
| 29 |
28
|
ex |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ ( i e. N /\ j e. N ) ) -> ( i =/= j -> ( i I j ) = ( 0g ` R ) ) ) |
| 30 |
29
|
ralrimivva |
|- ( ( N e. Fin /\ R e. CRing ) -> A. i e. N A. j e. N ( i =/= j -> ( i I j ) = ( 0g ` R ) ) ) |
| 31 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
| 32 |
1 2 3 8 16 4 19 5 31
|
chpdmat |
|- ( ( ( N e. Fin /\ R e. CRing /\ I e. ( Base ` A ) ) /\ A. i e. N A. j e. N ( i =/= j -> ( i I j ) = ( 0g ` R ) ) ) -> ( C ` I ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) ) |
| 33 |
11 12 18 30 32
|
syl31anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( C ` I ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) ) |
| 34 |
11
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> N e. Fin ) |
| 35 |
21
|
adantr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> R e. Ring ) |
| 36 |
|
simpr |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> k e. N ) |
| 37 |
3 9 19 34 35 36 36 7
|
mat1ov |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( k I k ) = if ( k = k , .1. , ( 0g ` R ) ) ) |
| 38 |
|
eqid |
|- k = k |
| 39 |
38
|
iftruei |
|- if ( k = k , .1. , ( 0g ` R ) ) = .1. |
| 40 |
37 39
|
eqtrdi |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( k I k ) = .1. ) |
| 41 |
40
|
fveq2d |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( S ` ( k I k ) ) = ( S ` .1. ) ) |
| 42 |
41
|
oveq2d |
|- ( ( ( N e. Fin /\ R e. CRing ) /\ k e. N ) -> ( X ( -g ` P ) ( S ` ( k I k ) ) ) = ( X ( -g ` P ) ( S ` .1. ) ) ) |
| 43 |
42
|
mpteq2dva |
|- ( ( N e. Fin /\ R e. CRing ) -> ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) = ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) |
| 44 |
43
|
oveq2d |
|- ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) = ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) ) |
| 45 |
2
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
| 46 |
5
|
crngmgp |
|- ( P e. CRing -> G e. CMnd ) |
| 47 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
| 48 |
45 46 47
|
3syl |
|- ( R e. CRing -> G e. Mnd ) |
| 49 |
48
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> G e. Mnd ) |
| 50 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 51 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
| 52 |
50 51
|
syl |
|- ( R e. Ring -> P e. Grp ) |
| 53 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 54 |
4 2 53
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
| 55 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 56 |
2 8 9 55
|
ply1scl1 |
|- ( R e. Ring -> ( S ` .1. ) = ( 1r ` P ) ) |
| 57 |
53 55
|
ringidcl |
|- ( P e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 58 |
50 57
|
syl |
|- ( R e. Ring -> ( 1r ` P ) e. ( Base ` P ) ) |
| 59 |
56 58
|
eqeltrd |
|- ( R e. Ring -> ( S ` .1. ) e. ( Base ` P ) ) |
| 60 |
52 54 59
|
3jca |
|- ( R e. Ring -> ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) ) |
| 61 |
13 60
|
syl |
|- ( R e. CRing -> ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) ) |
| 62 |
61
|
adantl |
|- ( ( N e. Fin /\ R e. CRing ) -> ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) ) |
| 63 |
53 31
|
grpsubcl |
|- ( ( P e. Grp /\ X e. ( Base ` P ) /\ ( S ` .1. ) e. ( Base ` P ) ) -> ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` P ) ) |
| 64 |
62 63
|
syl |
|- ( ( N e. Fin /\ R e. CRing ) -> ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` P ) ) |
| 65 |
5 53
|
mgpbas |
|- ( Base ` P ) = ( Base ` G ) |
| 66 |
64 65
|
eleqtrdi |
|- ( ( N e. Fin /\ R e. CRing ) -> ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` G ) ) |
| 67 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 68 |
67 6
|
gsumconst |
|- ( ( G e. Mnd /\ N e. Fin /\ ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` G ) ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) = ( ( # ` N ) .^ ( X ( -g ` P ) ( S ` .1. ) ) ) ) |
| 69 |
10
|
eqcomi |
|- ( -g ` P ) = .- |
| 70 |
69
|
oveqi |
|- ( X ( -g ` P ) ( S ` .1. ) ) = ( X .- ( S ` .1. ) ) |
| 71 |
70
|
oveq2i |
|- ( ( # ` N ) .^ ( X ( -g ` P ) ( S ` .1. ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) |
| 72 |
68 71
|
eqtrdi |
|- ( ( G e. Mnd /\ N e. Fin /\ ( X ( -g ` P ) ( S ` .1. ) ) e. ( Base ` G ) ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) |
| 73 |
49 11 66 72
|
syl3anc |
|- ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` .1. ) ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) |
| 74 |
44 73
|
eqtrd |
|- ( ( N e. Fin /\ R e. CRing ) -> ( G gsum ( k e. N |-> ( X ( -g ` P ) ( S ` ( k I k ) ) ) ) ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) |
| 75 |
33 74
|
eqtrd |
|- ( ( N e. Fin /\ R e. CRing ) -> ( C ` I ) = ( ( # ` N ) .^ ( X .- ( S ` .1. ) ) ) ) |