Step |
Hyp |
Ref |
Expression |
1 |
|
chpmat0.c |
|- C = ( (/) CharPlyMat R ) |
2 |
|
0fin |
|- (/) e. Fin |
3 |
|
id |
|- ( R e. Ring -> R e. Ring ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
4
|
snid |
|- (/) e. { (/) } |
6 |
|
mat0dimbas0 |
|- ( R e. Ring -> ( Base ` ( (/) Mat R ) ) = { (/) } ) |
7 |
5 6
|
eleqtrrid |
|- ( R e. Ring -> (/) e. ( Base ` ( (/) Mat R ) ) ) |
8 |
|
eqid |
|- ( (/) Mat R ) = ( (/) Mat R ) |
9 |
|
eqid |
|- ( Base ` ( (/) Mat R ) ) = ( Base ` ( (/) Mat R ) ) |
10 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
11 |
|
eqid |
|- ( (/) Mat ( Poly1 ` R ) ) = ( (/) Mat ( Poly1 ` R ) ) |
12 |
|
eqid |
|- ( (/) maDet ( Poly1 ` R ) ) = ( (/) maDet ( Poly1 ` R ) ) |
13 |
|
eqid |
|- ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) = ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) |
14 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
15 |
|
eqid |
|- ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) = ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) |
16 |
|
eqid |
|- ( (/) matToPolyMat R ) = ( (/) matToPolyMat R ) |
17 |
|
eqid |
|- ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) = ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) |
18 |
1 8 9 10 11 12 13 14 15 16 17
|
chpmatval |
|- ( ( (/) e. Fin /\ R e. Ring /\ (/) e. ( Base ` ( (/) Mat R ) ) ) -> ( C ` (/) ) = ( ( (/) maDet ( Poly1 ` R ) ) ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) ) |
19 |
2 3 7 18
|
mp3an2i |
|- ( R e. Ring -> ( C ` (/) ) = ( ( (/) maDet ( Poly1 ` R ) ) ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) ) |
20 |
10
|
ply1ring |
|- ( R e. Ring -> ( Poly1 ` R ) e. Ring ) |
21 |
|
mdet0pr |
|- ( ( Poly1 ` R ) e. Ring -> ( (/) maDet ( Poly1 ` R ) ) = { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ) |
22 |
21
|
fveq1d |
|- ( ( Poly1 ` R ) e. Ring -> ( ( (/) maDet ( Poly1 ` R ) ) ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) = ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) ) |
23 |
20 22
|
syl |
|- ( R e. Ring -> ( ( (/) maDet ( Poly1 ` R ) ) ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) = ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) ) |
24 |
11
|
mat0dimid |
|- ( ( Poly1 ` R ) e. Ring -> ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) = (/) ) |
25 |
20 24
|
syl |
|- ( R e. Ring -> ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) = (/) ) |
26 |
25
|
oveq2d |
|- ( R e. Ring -> ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) = ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) (/) ) ) |
27 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
28 |
14 10 27
|
vr1cl |
|- ( R e. Ring -> ( var1 ` R ) e. ( Base ` ( Poly1 ` R ) ) ) |
29 |
11
|
mat0dimscm |
|- ( ( ( Poly1 ` R ) e. Ring /\ ( var1 ` R ) e. ( Base ` ( Poly1 ` R ) ) ) -> ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) (/) ) = (/) ) |
30 |
20 28 29
|
syl2anc |
|- ( R e. Ring -> ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) (/) ) = (/) ) |
31 |
26 30
|
eqtrd |
|- ( R e. Ring -> ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) = (/) ) |
32 |
|
d0mat2pmat |
|- ( R e. Ring -> ( ( (/) matToPolyMat R ) ` (/) ) = (/) ) |
33 |
31 32
|
oveq12d |
|- ( R e. Ring -> ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) = ( (/) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) (/) ) ) |
34 |
11
|
matring |
|- ( ( (/) e. Fin /\ ( Poly1 ` R ) e. Ring ) -> ( (/) Mat ( Poly1 ` R ) ) e. Ring ) |
35 |
2 20 34
|
sylancr |
|- ( R e. Ring -> ( (/) Mat ( Poly1 ` R ) ) e. Ring ) |
36 |
|
ringgrp |
|- ( ( (/) Mat ( Poly1 ` R ) ) e. Ring -> ( (/) Mat ( Poly1 ` R ) ) e. Grp ) |
37 |
35 36
|
syl |
|- ( R e. Ring -> ( (/) Mat ( Poly1 ` R ) ) e. Grp ) |
38 |
|
mat0dimbas0 |
|- ( ( Poly1 ` R ) e. Ring -> ( Base ` ( (/) Mat ( Poly1 ` R ) ) ) = { (/) } ) |
39 |
20 38
|
syl |
|- ( R e. Ring -> ( Base ` ( (/) Mat ( Poly1 ` R ) ) ) = { (/) } ) |
40 |
5 39
|
eleqtrrid |
|- ( R e. Ring -> (/) e. ( Base ` ( (/) Mat ( Poly1 ` R ) ) ) ) |
41 |
|
eqid |
|- ( Base ` ( (/) Mat ( Poly1 ` R ) ) ) = ( Base ` ( (/) Mat ( Poly1 ` R ) ) ) |
42 |
|
eqid |
|- ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) = ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) |
43 |
41 42 13
|
grpsubid |
|- ( ( ( (/) Mat ( Poly1 ` R ) ) e. Grp /\ (/) e. ( Base ` ( (/) Mat ( Poly1 ` R ) ) ) ) -> ( (/) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) (/) ) = ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) ) |
44 |
37 40 43
|
syl2anc |
|- ( R e. Ring -> ( (/) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) (/) ) = ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) ) |
45 |
33 44
|
eqtrd |
|- ( R e. Ring -> ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) = ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) ) |
46 |
45
|
fveq2d |
|- ( R e. Ring -> ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) = ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) ) ) |
47 |
11
|
mat0dim0 |
|- ( ( Poly1 ` R ) e. Ring -> ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) = (/) ) |
48 |
20 47
|
syl |
|- ( R e. Ring -> ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) = (/) ) |
49 |
48
|
fveq2d |
|- ( R e. Ring -> ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) ) = ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` (/) ) ) |
50 |
|
fvex |
|- ( 1r ` ( Poly1 ` R ) ) e. _V |
51 |
4 50
|
fvsn |
|- ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` (/) ) = ( 1r ` ( Poly1 ` R ) ) |
52 |
49 51
|
eqtrdi |
|- ( R e. Ring -> ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( 0g ` ( (/) Mat ( Poly1 ` R ) ) ) ) = ( 1r ` ( Poly1 ` R ) ) ) |
53 |
46 52
|
eqtrd |
|- ( R e. Ring -> ( { <. (/) , ( 1r ` ( Poly1 ` R ) ) >. } ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) = ( 1r ` ( Poly1 ` R ) ) ) |
54 |
23 53
|
eqtrd |
|- ( R e. Ring -> ( ( (/) maDet ( Poly1 ` R ) ) ` ( ( ( var1 ` R ) ( .s ` ( (/) Mat ( Poly1 ` R ) ) ) ( 1r ` ( (/) Mat ( Poly1 ` R ) ) ) ) ( -g ` ( (/) Mat ( Poly1 ` R ) ) ) ( ( (/) matToPolyMat R ) ` (/) ) ) ) = ( 1r ` ( Poly1 ` R ) ) ) |
55 |
19 54
|
eqtrd |
|- ( R e. Ring -> ( C ` (/) ) = ( 1r ` ( Poly1 ` R ) ) ) |