Step |
Hyp |
Ref |
Expression |
1 |
|
chpmat1d.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chpmat1d.p |
|- P = ( Poly1 ` R ) |
3 |
|
chpmat1d.a |
|- A = ( N Mat R ) |
4 |
|
chpmat1d.b |
|- B = ( Base ` A ) |
5 |
|
chpmat1d.x |
|- X = ( var1 ` R ) |
6 |
|
chpmat1d.z |
|- .- = ( -g ` P ) |
7 |
|
chpmat1d.s |
|- S = ( algSc ` P ) |
8 |
|
snfi |
|- { I } e. Fin |
9 |
|
eleq1 |
|- ( N = { I } -> ( N e. Fin <-> { I } e. Fin ) ) |
10 |
8 9
|
mpbiri |
|- ( N = { I } -> N e. Fin ) |
11 |
10
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> N e. Fin ) |
12 |
11
|
3ad2ant2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N e. Fin ) |
13 |
|
simp1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. CRing ) |
14 |
|
simp3 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. B ) |
15 |
|
eqid |
|- ( N Mat P ) = ( N Mat P ) |
16 |
|
eqid |
|- ( N maDet P ) = ( N maDet P ) |
17 |
|
eqid |
|- ( -g ` ( N Mat P ) ) = ( -g ` ( N Mat P ) ) |
18 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
19 |
|
eqid |
|- ( .s ` ( N Mat P ) ) = ( .s ` ( N Mat P ) ) |
20 |
|
eqid |
|- ( N matToPolyMat R ) = ( N matToPolyMat R ) |
21 |
|
eqid |
|- ( 1r ` ( N Mat P ) ) = ( 1r ` ( N Mat P ) ) |
22 |
1 3 4 2 15 16 17 18 19 20 21
|
chpmatval |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) |
23 |
12 13 14 22
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) |
24 |
2
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
25 |
24
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> P e. CRing ) |
26 |
|
simp2 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N = { I } /\ I e. V ) ) |
27 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
28 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
29 |
27 28
|
syl |
|- ( R e. CRing -> P e. Ring ) |
30 |
29
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> P e. Ring ) |
31 |
15
|
matring |
|- ( ( N e. Fin /\ P e. Ring ) -> ( N Mat P ) e. Ring ) |
32 |
12 30 31
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N Mat P ) e. Ring ) |
33 |
|
ringgrp |
|- ( ( N Mat P ) e. Ring -> ( N Mat P ) e. Grp ) |
34 |
32 33
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N Mat P ) e. Grp ) |
35 |
15
|
matlmod |
|- ( ( N e. Fin /\ P e. Ring ) -> ( N Mat P ) e. LMod ) |
36 |
12 30 35
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N Mat P ) e. LMod ) |
37 |
27
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) |
38 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
39 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
40 |
18 38 39
|
vr1cl |
|- ( R e. Ring -> ( var1 ` R ) e. ( Base ` ( Poly1 ` R ) ) ) |
41 |
37 40
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( var1 ` R ) e. ( Base ` ( Poly1 ` R ) ) ) |
42 |
38
|
ply1crng |
|- ( R e. CRing -> ( Poly1 ` R ) e. CRing ) |
43 |
42
|
3ad2ant1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Poly1 ` R ) e. CRing ) |
44 |
2
|
oveq2i |
|- ( N Mat P ) = ( N Mat ( Poly1 ` R ) ) |
45 |
44
|
matsca2 |
|- ( ( N e. Fin /\ ( Poly1 ` R ) e. CRing ) -> ( Poly1 ` R ) = ( Scalar ` ( N Mat P ) ) ) |
46 |
12 43 45
|
syl2anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Poly1 ` R ) = ( Scalar ` ( N Mat P ) ) ) |
47 |
46
|
eqcomd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Scalar ` ( N Mat P ) ) = ( Poly1 ` R ) ) |
48 |
47
|
fveq2d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( Scalar ` ( N Mat P ) ) ) = ( Base ` ( Poly1 ` R ) ) ) |
49 |
41 48
|
eleqtrrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( var1 ` R ) e. ( Base ` ( Scalar ` ( N Mat P ) ) ) ) |
50 |
|
eqid |
|- ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) |
51 |
50 21
|
ringidcl |
|- ( ( N Mat P ) e. Ring -> ( 1r ` ( N Mat P ) ) e. ( Base ` ( N Mat P ) ) ) |
52 |
32 51
|
syl |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( 1r ` ( N Mat P ) ) e. ( Base ` ( N Mat P ) ) ) |
53 |
|
eqid |
|- ( Scalar ` ( N Mat P ) ) = ( Scalar ` ( N Mat P ) ) |
54 |
|
eqid |
|- ( Base ` ( Scalar ` ( N Mat P ) ) ) = ( Base ` ( Scalar ` ( N Mat P ) ) ) |
55 |
50 53 19 54
|
lmodvscl |
|- ( ( ( N Mat P ) e. LMod /\ ( var1 ` R ) e. ( Base ` ( Scalar ` ( N Mat P ) ) ) /\ ( 1r ` ( N Mat P ) ) e. ( Base ` ( N Mat P ) ) ) -> ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) e. ( Base ` ( N Mat P ) ) ) |
56 |
36 49 52 55
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) e. ( Base ` ( N Mat P ) ) ) |
57 |
20 3 4 2 15
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( N matToPolyMat R ) ` M ) e. ( Base ` ( N Mat P ) ) ) |
58 |
12 37 14 57
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( N matToPolyMat R ) ` M ) e. ( Base ` ( N Mat P ) ) ) |
59 |
50 17
|
grpsubcl |
|- ( ( ( N Mat P ) e. Grp /\ ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) e. ( Base ` ( N Mat P ) ) /\ ( ( N matToPolyMat R ) ` M ) e. ( Base ` ( N Mat P ) ) ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) |
60 |
34 56 58 59
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) |
61 |
16 15 50
|
m1detdiag |
|- ( ( P e. CRing /\ ( N = { I } /\ I e. V ) /\ ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) ) |
62 |
25 26 60 61
|
syl3anc |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) ) |
63 |
5
|
eqcomi |
|- ( var1 ` R ) = X |
64 |
63
|
a1i |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( var1 ` R ) = X ) |
65 |
64
|
oveq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) = ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ) |
66 |
65
|
oveq1d |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) = ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) |
67 |
66
|
oveqd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( I ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) ) |
68 |
1 2 3 4 5 6 7 15 20
|
chpmat1dlem |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |
69 |
27 68
|
syl3an1 |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |
70 |
67 69
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |
71 |
62 70
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) = ( X .- ( S ` ( I M I ) ) ) ) |
72 |
23 71
|
eqtrd |
|- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( C ` M ) = ( X .- ( S ` ( I M I ) ) ) ) |