| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmat1d.c |
|- C = ( N CharPlyMat R ) |
| 2 |
|
chpmat1d.p |
|- P = ( Poly1 ` R ) |
| 3 |
|
chpmat1d.a |
|- A = ( N Mat R ) |
| 4 |
|
chpmat1d.b |
|- B = ( Base ` A ) |
| 5 |
|
chpmat1d.x |
|- X = ( var1 ` R ) |
| 6 |
|
chpmat1d.z |
|- .- = ( -g ` P ) |
| 7 |
|
chpmat1d.s |
|- S = ( algSc ` P ) |
| 8 |
|
chpmat1dlem.g |
|- G = ( N Mat P ) |
| 9 |
|
chpmat1dlem.x |
|- T = ( N matToPolyMat R ) |
| 10 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 11 |
10
|
3ad2ant1 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> P e. Ring ) |
| 12 |
|
snfi |
|- { I } e. Fin |
| 13 |
|
eleq1 |
|- ( N = { I } -> ( N e. Fin <-> { I } e. Fin ) ) |
| 14 |
12 13
|
mpbiri |
|- ( N = { I } -> N e. Fin ) |
| 15 |
14
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> N e. Fin ) |
| 16 |
10 15
|
anim12i |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) ) -> ( P e. Ring /\ N e. Fin ) ) |
| 17 |
16
|
3adant3 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( P e. Ring /\ N e. Fin ) ) |
| 18 |
17
|
ancomd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N e. Fin /\ P e. Ring ) ) |
| 19 |
8
|
matlmod |
|- ( ( N e. Fin /\ P e. Ring ) -> G e. LMod ) |
| 20 |
18 19
|
syl |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> G e. LMod ) |
| 21 |
|
eqid |
|- ( Poly1 ` R ) = ( Poly1 ` R ) |
| 22 |
|
eqid |
|- ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) ) |
| 23 |
5 21 22
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` ( Poly1 ` R ) ) ) |
| 24 |
23
|
3ad2ant1 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> X e. ( Base ` ( Poly1 ` R ) ) ) |
| 25 |
15
|
3ad2ant2 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N e. Fin ) |
| 26 |
|
fvex |
|- ( Poly1 ` R ) e. _V |
| 27 |
2
|
oveq2i |
|- ( N Mat P ) = ( N Mat ( Poly1 ` R ) ) |
| 28 |
8 27
|
eqtri |
|- G = ( N Mat ( Poly1 ` R ) ) |
| 29 |
28
|
matsca2 |
|- ( ( N e. Fin /\ ( Poly1 ` R ) e. _V ) -> ( Poly1 ` R ) = ( Scalar ` G ) ) |
| 30 |
25 26 29
|
sylancl |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Poly1 ` R ) = ( Scalar ` G ) ) |
| 31 |
30
|
eqcomd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Scalar ` G ) = ( Poly1 ` R ) ) |
| 32 |
31
|
fveq2d |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( Scalar ` G ) ) = ( Base ` ( Poly1 ` R ) ) ) |
| 33 |
24 32
|
eleqtrrd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> X e. ( Base ` ( Scalar ` G ) ) ) |
| 34 |
8
|
matring |
|- ( ( N e. Fin /\ P e. Ring ) -> G e. Ring ) |
| 35 |
18 34
|
syl |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> G e. Ring ) |
| 36 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 37 |
|
eqid |
|- ( 1r ` G ) = ( 1r ` G ) |
| 38 |
36 37
|
ringidcl |
|- ( G e. Ring -> ( 1r ` G ) e. ( Base ` G ) ) |
| 39 |
35 38
|
syl |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( 1r ` G ) e. ( Base ` G ) ) |
| 40 |
20 33 39
|
3jca |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( G e. LMod /\ X e. ( Base ` ( Scalar ` G ) ) /\ ( 1r ` G ) e. ( Base ` G ) ) ) |
| 41 |
|
eqid |
|- ( Scalar ` G ) = ( Scalar ` G ) |
| 42 |
|
eqid |
|- ( .s ` G ) = ( .s ` G ) |
| 43 |
|
eqid |
|- ( Base ` ( Scalar ` G ) ) = ( Base ` ( Scalar ` G ) ) |
| 44 |
36 41 42 43
|
lmodvscl |
|- ( ( G e. LMod /\ X e. ( Base ` ( Scalar ` G ) ) /\ ( 1r ` G ) e. ( Base ` G ) ) -> ( X ( .s ` G ) ( 1r ` G ) ) e. ( Base ` G ) ) |
| 45 |
40 44
|
syl |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( X ( .s ` G ) ( 1r ` G ) ) e. ( Base ` G ) ) |
| 46 |
|
simp1 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) |
| 47 |
|
simp3 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. B ) |
| 48 |
25 46 47
|
3jca |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( N e. Fin /\ R e. Ring /\ M e. B ) ) |
| 49 |
9 3 4 2 8
|
mat2pmatbas |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. ( Base ` G ) ) |
| 50 |
48 49
|
syl |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( T ` M ) e. ( Base ` G ) ) |
| 51 |
|
snidg |
|- ( I e. V -> I e. { I } ) |
| 52 |
51
|
adantl |
|- ( ( N = { I } /\ I e. V ) -> I e. { I } ) |
| 53 |
|
eleq2 |
|- ( N = { I } -> ( I e. N <-> I e. { I } ) ) |
| 54 |
53
|
adantr |
|- ( ( N = { I } /\ I e. V ) -> ( I e. N <-> I e. { I } ) ) |
| 55 |
52 54
|
mpbird |
|- ( ( N = { I } /\ I e. V ) -> I e. N ) |
| 56 |
|
id |
|- ( I e. N -> I e. N ) |
| 57 |
55 56
|
jccir |
|- ( ( N = { I } /\ I e. V ) -> ( I e. N /\ I e. N ) ) |
| 58 |
57
|
3ad2ant2 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N ) ) |
| 59 |
|
eqid |
|- ( -g ` G ) = ( -g ` G ) |
| 60 |
8 36 59 6
|
matsubgcell |
|- ( ( P e. Ring /\ ( ( X ( .s ` G ) ( 1r ` G ) ) e. ( Base ` G ) /\ ( T ` M ) e. ( Base ` G ) ) /\ ( I e. N /\ I e. N ) ) -> ( I ( ( X ( .s ` G ) ( 1r ` G ) ) ( -g ` G ) ( T ` M ) ) I ) = ( ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) .- ( I ( T ` M ) I ) ) ) |
| 61 |
11 45 50 58 60
|
syl121anc |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` G ) ( 1r ` G ) ) ( -g ` G ) ( T ` M ) ) I ) = ( ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) .- ( I ( T ` M ) I ) ) ) |
| 62 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 63 |
5 2 62
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
| 64 |
63
|
3ad2ant1 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> X e. ( Base ` P ) ) |
| 65 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 66 |
8 36 62 42 65
|
matvscacell |
|- ( ( P e. Ring /\ ( X e. ( Base ` P ) /\ ( 1r ` G ) e. ( Base ` G ) ) /\ ( I e. N /\ I e. N ) ) -> ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) = ( X ( .r ` P ) ( I ( 1r ` G ) I ) ) ) |
| 67 |
11 64 39 58 66
|
syl121anc |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) = ( X ( .r ` P ) ( I ( 1r ` G ) I ) ) ) |
| 68 |
|
eqid |
|- ( 1r ` P ) = ( 1r ` P ) |
| 69 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 70 |
55
|
3ad2ant2 |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. N ) |
| 71 |
8 68 69 25 11 70 70 37
|
mat1ov |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( 1r ` G ) I ) = if ( I = I , ( 1r ` P ) , ( 0g ` P ) ) ) |
| 72 |
|
eqidd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I = I ) |
| 73 |
72
|
iftrued |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> if ( I = I , ( 1r ` P ) , ( 0g ` P ) ) = ( 1r ` P ) ) |
| 74 |
71 73
|
eqtrd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( 1r ` G ) I ) = ( 1r ` P ) ) |
| 75 |
74
|
oveq2d |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( X ( .r ` P ) ( I ( 1r ` G ) I ) ) = ( X ( .r ` P ) ( 1r ` P ) ) ) |
| 76 |
62 65 68
|
ringridm |
|- ( ( P e. Ring /\ X e. ( Base ` P ) ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) |
| 77 |
11 64 76
|
syl2anc |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( X ( .r ` P ) ( 1r ` P ) ) = X ) |
| 78 |
67 75 77
|
3eqtrd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) = X ) |
| 79 |
9 3 4 2 7
|
mat2pmatvalel |
|- ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ ( I e. N /\ I e. N ) ) -> ( I ( T ` M ) I ) = ( S ` ( I M I ) ) ) |
| 80 |
48 58 79
|
syl2anc |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( T ` M ) I ) = ( S ` ( I M I ) ) ) |
| 81 |
78 80
|
oveq12d |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( I ( X ( .s ` G ) ( 1r ` G ) ) I ) .- ( I ( T ` M ) I ) ) = ( X .- ( S ` ( I M I ) ) ) ) |
| 82 |
61 81
|
eqtrd |
|- ( ( R e. Ring /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I ( ( X ( .s ` G ) ( 1r ` G ) ) ( -g ` G ) ( T ` M ) ) I ) = ( X .- ( S ` ( I M I ) ) ) ) |