Step |
Hyp |
Ref |
Expression |
1 |
|
chpmatply1.c |
|- C = ( N CharPlyMat R ) |
2 |
|
chpmatply1.a |
|- A = ( N Mat R ) |
3 |
|
chpmatply1.b |
|- B = ( Base ` A ) |
4 |
|
chpmatply1.p |
|- P = ( Poly1 ` R ) |
5 |
|
chpmatply1.e |
|- E = ( Base ` P ) |
6 |
|
eqid |
|- ( N Mat P ) = ( N Mat P ) |
7 |
|
eqid |
|- ( N maDet P ) = ( N maDet P ) |
8 |
|
eqid |
|- ( -g ` ( N Mat P ) ) = ( -g ` ( N Mat P ) ) |
9 |
|
eqid |
|- ( var1 ` R ) = ( var1 ` R ) |
10 |
|
eqid |
|- ( .s ` ( N Mat P ) ) = ( .s ` ( N Mat P ) ) |
11 |
|
eqid |
|- ( N matToPolyMat R ) = ( N matToPolyMat R ) |
12 |
|
eqid |
|- ( 1r ` ( N Mat P ) ) = ( 1r ` ( N Mat P ) ) |
13 |
1 2 3 4 6 7 8 9 10 11 12
|
chpmatval |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) = ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) ) |
14 |
4
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
15 |
14
|
3ad2ant2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> P e. CRing ) |
16 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
17 |
|
eqid |
|- ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) = ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) |
18 |
2 3 4 6 9 11 8 10 12 17
|
chmatcl |
|- ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) |
19 |
16 18
|
syl3an2 |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) |
20 |
|
eqid |
|- ( Base ` ( N Mat P ) ) = ( Base ` ( N Mat P ) ) |
21 |
7 6 20 5
|
mdetcl |
|- ( ( P e. CRing /\ ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) e. ( Base ` ( N Mat P ) ) ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) e. E ) |
22 |
15 19 21
|
syl2anc |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( ( N maDet P ) ` ( ( ( var1 ` R ) ( .s ` ( N Mat P ) ) ( 1r ` ( N Mat P ) ) ) ( -g ` ( N Mat P ) ) ( ( N matToPolyMat R ) ` M ) ) ) e. E ) |
23 |
13 22
|
eqeltrd |
|- ( ( N e. Fin /\ R e. CRing /\ M e. B ) -> ( C ` M ) e. E ) |