Metamath Proof Explorer


Theorem chpmatval

Description: The characteristic polynomial of a (square) matrix (expressed with a determinant). (Contributed by AV, 2-Aug-2019)

Ref Expression
Hypotheses chpmatfval.c
|- C = ( N CharPlyMat R )
chpmatfval.a
|- A = ( N Mat R )
chpmatfval.b
|- B = ( Base ` A )
chpmatfval.p
|- P = ( Poly1 ` R )
chpmatfval.y
|- Y = ( N Mat P )
chpmatfval.d
|- D = ( N maDet P )
chpmatfval.s
|- .- = ( -g ` Y )
chpmatfval.x
|- X = ( var1 ` R )
chpmatfval.m
|- .x. = ( .s ` Y )
chpmatfval.t
|- T = ( N matToPolyMat R )
chpmatfval.i
|- .1. = ( 1r ` Y )
Assertion chpmatval
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( C ` M ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) )

Proof

Step Hyp Ref Expression
1 chpmatfval.c
 |-  C = ( N CharPlyMat R )
2 chpmatfval.a
 |-  A = ( N Mat R )
3 chpmatfval.b
 |-  B = ( Base ` A )
4 chpmatfval.p
 |-  P = ( Poly1 ` R )
5 chpmatfval.y
 |-  Y = ( N Mat P )
6 chpmatfval.d
 |-  D = ( N maDet P )
7 chpmatfval.s
 |-  .- = ( -g ` Y )
8 chpmatfval.x
 |-  X = ( var1 ` R )
9 chpmatfval.m
 |-  .x. = ( .s ` Y )
10 chpmatfval.t
 |-  T = ( N matToPolyMat R )
11 chpmatfval.i
 |-  .1. = ( 1r ` Y )
12 1 2 3 4 5 6 7 8 9 10 11 chpmatfval
 |-  ( ( N e. Fin /\ R e. V ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) )
13 12 3adant3
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) )
14 fveq2
 |-  ( m = M -> ( T ` m ) = ( T ` M ) )
15 14 oveq2d
 |-  ( m = M -> ( ( X .x. .1. ) .- ( T ` m ) ) = ( ( X .x. .1. ) .- ( T ` M ) ) )
16 15 fveq2d
 |-  ( m = M -> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) )
17 16 adantl
 |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ m = M ) -> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) )
18 simp3
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> M e. B )
19 fvexd
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) e. _V )
20 13 17 18 19 fvmptd
 |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( C ` M ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) )