| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpmatfval.c |
|- C = ( N CharPlyMat R ) |
| 2 |
|
chpmatfval.a |
|- A = ( N Mat R ) |
| 3 |
|
chpmatfval.b |
|- B = ( Base ` A ) |
| 4 |
|
chpmatfval.p |
|- P = ( Poly1 ` R ) |
| 5 |
|
chpmatfval.y |
|- Y = ( N Mat P ) |
| 6 |
|
chpmatfval.d |
|- D = ( N maDet P ) |
| 7 |
|
chpmatfval.s |
|- .- = ( -g ` Y ) |
| 8 |
|
chpmatfval.x |
|- X = ( var1 ` R ) |
| 9 |
|
chpmatfval.m |
|- .x. = ( .s ` Y ) |
| 10 |
|
chpmatfval.t |
|- T = ( N matToPolyMat R ) |
| 11 |
|
chpmatfval.i |
|- .1. = ( 1r ` Y ) |
| 12 |
1 2 3 4 5 6 7 8 9 10 11
|
chpmatfval |
|- ( ( N e. Fin /\ R e. V ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) |
| 13 |
12
|
3adant3 |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> C = ( m e. B |-> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) ) ) |
| 14 |
|
fveq2 |
|- ( m = M -> ( T ` m ) = ( T ` M ) ) |
| 15 |
14
|
oveq2d |
|- ( m = M -> ( ( X .x. .1. ) .- ( T ` m ) ) = ( ( X .x. .1. ) .- ( T ` M ) ) ) |
| 16 |
15
|
fveq2d |
|- ( m = M -> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) |
| 17 |
16
|
adantl |
|- ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ m = M ) -> ( D ` ( ( X .x. .1. ) .- ( T ` m ) ) ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) |
| 18 |
|
simp3 |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> M e. B ) |
| 19 |
|
fvexd |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) e. _V ) |
| 20 |
13 17 18 19
|
fvmptd |
|- ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( C ` M ) = ( D ` ( ( X .x. .1. ) .- ( T ` M ) ) ) ) |