Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
|- 2 e. RR |
2 |
|
elicopnf |
|- ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) |
3 |
1 2
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) |
4 |
|
chtrpcl |
|- ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) |
5 |
3 4
|
sylbi |
|- ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ ) |
6 |
5
|
rpcnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) |
7 |
3
|
simplbi |
|- ( x e. ( 2 [,) +oo ) -> x e. RR ) |
8 |
|
0red |
|- ( x e. ( 2 [,) +oo ) -> 0 e. RR ) |
9 |
1
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 2 e. RR ) |
10 |
|
2pos |
|- 0 < 2 |
11 |
10
|
a1i |
|- ( x e. ( 2 [,) +oo ) -> 0 < 2 ) |
12 |
3
|
simprbi |
|- ( x e. ( 2 [,) +oo ) -> 2 <_ x ) |
13 |
8 9 7 11 12
|
ltletrd |
|- ( x e. ( 2 [,) +oo ) -> 0 < x ) |
14 |
7 13
|
elrpd |
|- ( x e. ( 2 [,) +oo ) -> x e. RR+ ) |
15 |
14
|
rpcnne0d |
|- ( x e. ( 2 [,) +oo ) -> ( x e. CC /\ x =/= 0 ) ) |
16 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
17 |
|
chpcl |
|- ( x e. RR -> ( psi ` x ) e. RR ) |
18 |
16 17
|
syl |
|- ( x e. RR+ -> ( psi ` x ) e. RR ) |
19 |
18
|
recnd |
|- ( x e. RR+ -> ( psi ` x ) e. CC ) |
20 |
14 19
|
syl |
|- ( x e. ( 2 [,) +oo ) -> ( psi ` x ) e. CC ) |
21 |
|
dmdcan |
|- ( ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ ( psi ` x ) e. CC ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) |
22 |
6 15 20 21
|
syl3anc |
|- ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) |
23 |
22
|
adantl |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) |
24 |
23
|
mpteq2dva |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) |
25 |
|
ovexd |
|- ( T. -> ( 2 [,) +oo ) e. _V ) |
26 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / x ) e. _V ) |
27 |
|
ovexd |
|- ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) e. _V ) |
28 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ) |
29 |
|
eqidd |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) |
30 |
25 26 27 28 29
|
offval2 |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) ) ) |
31 |
14
|
ssriv |
|- ( 2 [,) +oo ) C_ RR+ |
32 |
|
resmpt |
|- ( ( 2 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) |
33 |
31 32
|
mp1i |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) |
34 |
24 30 33
|
3eqtr4rd |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) ) |
35 |
31
|
a1i |
|- ( T. -> ( 2 [,) +oo ) C_ RR+ ) |
36 |
|
chto1ub |
|- ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) |
37 |
36
|
a1i |
|- ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
38 |
35 37
|
o1res2 |
|- ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) ) |
39 |
|
chpchtlim |
|- ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 |
40 |
|
rlimo1 |
|- ( ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) ) |
41 |
39 40
|
ax-mp |
|- ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) |
42 |
|
o1mul |
|- ( ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) ) -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) e. O(1) ) |
43 |
38 41 42
|
sylancl |
|- ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) e. O(1) ) |
44 |
34 43
|
eqeltrd |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) e. O(1) ) |
45 |
|
rerpdivcl |
|- ( ( ( psi ` x ) e. RR /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) |
46 |
18 45
|
mpancom |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. RR ) |
47 |
46
|
recnd |
|- ( x e. RR+ -> ( ( psi ` x ) / x ) e. CC ) |
48 |
47
|
adantl |
|- ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. CC ) |
49 |
48
|
fmpttd |
|- ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) : RR+ --> CC ) |
50 |
|
rpssre |
|- RR+ C_ RR |
51 |
50
|
a1i |
|- ( T. -> RR+ C_ RR ) |
52 |
1
|
a1i |
|- ( T. -> 2 e. RR ) |
53 |
49 51 52
|
o1resb |
|- ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) <-> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) e. O(1) ) ) |
54 |
44 53
|
mpbird |
|- ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) ) |
55 |
54
|
mptru |
|- ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) |