| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 |  | elicopnf |  |-  ( 2 e. RR -> ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) ) | 
						
							| 3 | 1 2 | ax-mp |  |-  ( x e. ( 2 [,) +oo ) <-> ( x e. RR /\ 2 <_ x ) ) | 
						
							| 4 |  | chtrpcl |  |-  ( ( x e. RR /\ 2 <_ x ) -> ( theta ` x ) e. RR+ ) | 
						
							| 5 | 3 4 | sylbi |  |-  ( x e. ( 2 [,) +oo ) -> ( theta ` x ) e. RR+ ) | 
						
							| 6 | 5 | rpcnne0d |  |-  ( x e. ( 2 [,) +oo ) -> ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) ) | 
						
							| 7 | 3 | simplbi |  |-  ( x e. ( 2 [,) +oo ) -> x e. RR ) | 
						
							| 8 |  | 0red |  |-  ( x e. ( 2 [,) +oo ) -> 0 e. RR ) | 
						
							| 9 | 1 | a1i |  |-  ( x e. ( 2 [,) +oo ) -> 2 e. RR ) | 
						
							| 10 |  | 2pos |  |-  0 < 2 | 
						
							| 11 | 10 | a1i |  |-  ( x e. ( 2 [,) +oo ) -> 0 < 2 ) | 
						
							| 12 | 3 | simprbi |  |-  ( x e. ( 2 [,) +oo ) -> 2 <_ x ) | 
						
							| 13 | 8 9 7 11 12 | ltletrd |  |-  ( x e. ( 2 [,) +oo ) -> 0 < x ) | 
						
							| 14 | 7 13 | elrpd |  |-  ( x e. ( 2 [,) +oo ) -> x e. RR+ ) | 
						
							| 15 | 14 | rpcnne0d |  |-  ( x e. ( 2 [,) +oo ) -> ( x e. CC /\ x =/= 0 ) ) | 
						
							| 16 |  | rpre |  |-  ( x e. RR+ -> x e. RR ) | 
						
							| 17 |  | chpcl |  |-  ( x e. RR -> ( psi ` x ) e. RR ) | 
						
							| 18 | 16 17 | syl |  |-  ( x e. RR+ -> ( psi ` x ) e. RR ) | 
						
							| 19 | 18 | recnd |  |-  ( x e. RR+ -> ( psi ` x ) e. CC ) | 
						
							| 20 | 14 19 | syl |  |-  ( x e. ( 2 [,) +oo ) -> ( psi ` x ) e. CC ) | 
						
							| 21 |  | dmdcan |  |-  ( ( ( ( theta ` x ) e. CC /\ ( theta ` x ) =/= 0 ) /\ ( x e. CC /\ x =/= 0 ) /\ ( psi ` x ) e. CC ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) | 
						
							| 22 | 6 15 20 21 | syl3anc |  |-  ( x e. ( 2 [,) +oo ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) = ( ( psi ` x ) / x ) ) | 
						
							| 24 | 23 | mpteq2dva |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) | 
						
							| 25 |  | ovexd |  |-  ( T. -> ( 2 [,) +oo ) e. _V ) | 
						
							| 26 |  | ovexd |  |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( theta ` x ) / x ) e. _V ) | 
						
							| 27 |  | ovexd |  |-  ( ( T. /\ x e. ( 2 [,) +oo ) ) -> ( ( psi ` x ) / ( theta ` x ) ) e. _V ) | 
						
							| 28 |  | eqidd |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) ) | 
						
							| 29 |  | eqidd |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) | 
						
							| 30 | 25 26 27 28 29 | offval2 |  |-  ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( ( theta ` x ) / x ) x. ( ( psi ` x ) / ( theta ` x ) ) ) ) ) | 
						
							| 31 | 14 | ssriv |  |-  ( 2 [,) +oo ) C_ RR+ | 
						
							| 32 |  | resmpt |  |-  ( ( 2 [,) +oo ) C_ RR+ -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) | 
						
							| 33 | 31 32 | mp1i |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / x ) ) ) | 
						
							| 34 | 24 30 33 | 3eqtr4rd |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) = ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) ) | 
						
							| 35 | 31 | a1i |  |-  ( T. -> ( 2 [,) +oo ) C_ RR+ ) | 
						
							| 36 |  | chto1ub |  |-  ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) | 
						
							| 37 | 36 | a1i |  |-  ( T. -> ( x e. RR+ |-> ( ( theta ` x ) / x ) ) e. O(1) ) | 
						
							| 38 | 35 37 | o1res2 |  |-  ( T. -> ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) ) | 
						
							| 39 |  | chpchtlim |  |-  ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 | 
						
							| 40 |  | rlimo1 |  |-  ( ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ~~>r 1 -> ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) ) | 
						
							| 41 | 39 40 | ax-mp |  |-  ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) | 
						
							| 42 |  | o1mul |  |-  ( ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) e. O(1) /\ ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) e. O(1) ) -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) e. O(1) ) | 
						
							| 43 | 38 41 42 | sylancl |  |-  ( T. -> ( ( x e. ( 2 [,) +oo ) |-> ( ( theta ` x ) / x ) ) oF x. ( x e. ( 2 [,) +oo ) |-> ( ( psi ` x ) / ( theta ` x ) ) ) ) e. O(1) ) | 
						
							| 44 | 34 43 | eqeltrd |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) e. O(1) ) | 
						
							| 45 |  | rerpdivcl |  |-  ( ( ( psi ` x ) e. RR /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. RR ) | 
						
							| 46 | 18 45 | mpancom |  |-  ( x e. RR+ -> ( ( psi ` x ) / x ) e. RR ) | 
						
							| 47 | 46 | recnd |  |-  ( x e. RR+ -> ( ( psi ` x ) / x ) e. CC ) | 
						
							| 48 | 47 | adantl |  |-  ( ( T. /\ x e. RR+ ) -> ( ( psi ` x ) / x ) e. CC ) | 
						
							| 49 | 48 | fmpttd |  |-  ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) : RR+ --> CC ) | 
						
							| 50 |  | rpssre |  |-  RR+ C_ RR | 
						
							| 51 | 50 | a1i |  |-  ( T. -> RR+ C_ RR ) | 
						
							| 52 | 1 | a1i |  |-  ( T. -> 2 e. RR ) | 
						
							| 53 | 49 51 52 | o1resb |  |-  ( T. -> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) <-> ( ( x e. RR+ |-> ( ( psi ` x ) / x ) ) |` ( 2 [,) +oo ) ) e. O(1) ) ) | 
						
							| 54 | 44 53 | mpbird |  |-  ( T. -> ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) ) | 
						
							| 55 | 54 | mptru |  |-  ( x e. RR+ |-> ( ( psi ` x ) / x ) ) e. O(1) |