| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							choccl | 
							 |-  ( B e. CH -> ( _|_ ` B ) e. CH )  | 
						
						
							| 2 | 
							
								
							 | 
							chpsscon3 | 
							 |-  ( ( A e. CH /\ ( _|_ ` B ) e. CH ) -> ( A C. ( _|_ ` B ) <-> ( _|_ ` ( _|_ ` B ) ) C. ( _|_ ` A ) ) )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylan2 | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C. ( _|_ ` B ) <-> ( _|_ ` ( _|_ ` B ) ) C. ( _|_ ` A ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							ococ | 
							 |-  ( B e. CH -> ( _|_ ` ( _|_ ` B ) ) = B )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantl | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( _|_ ` ( _|_ ` B ) ) = B )  | 
						
						
							| 6 | 
							
								5
							 | 
							psseq1d | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( ( _|_ ` ( _|_ ` B ) ) C. ( _|_ ` A ) <-> B C. ( _|_ ` A ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							bitrd | 
							 |-  ( ( A e. CH /\ B e. CH ) -> ( A C. ( _|_ ` B ) <-> B C. ( _|_ ` A ) ) )  |