Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( 1 ... ( |_ ` B ) ) e. Fin ) |
2 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` B ) ) -> n e. NN ) |
3 |
2
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ n e. ( 1 ... ( |_ ` B ) ) ) -> n e. NN ) |
4 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
5 |
3 4
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ n e. ( 1 ... ( |_ ` B ) ) ) -> ( Lam ` n ) e. RR ) |
6 |
|
vmage0 |
|- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
7 |
3 6
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ n e. ( 1 ... ( |_ ` B ) ) ) -> 0 <_ ( Lam ` n ) ) |
8 |
|
flword2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( |_ ` B ) e. ( ZZ>= ` ( |_ ` A ) ) ) |
9 |
|
fzss2 |
|- ( ( |_ ` B ) e. ( ZZ>= ` ( |_ ` A ) ) -> ( 1 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` B ) ) ) |
10 |
8 9
|
syl |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( 1 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` B ) ) ) |
11 |
1 5 7 10
|
fsumless |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) <_ sum_ n e. ( 1 ... ( |_ ` B ) ) ( Lam ` n ) ) |
12 |
|
chpval |
|- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
13 |
12
|
3ad2ant1 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
14 |
|
chpval |
|- ( B e. RR -> ( psi ` B ) = sum_ n e. ( 1 ... ( |_ ` B ) ) ( Lam ` n ) ) |
15 |
14
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` B ) = sum_ n e. ( 1 ... ( |_ ` B ) ) ( Lam ` n ) ) |
16 |
11 13 15
|
3brtr4d |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` A ) <_ ( psi ` B ) ) |