Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | chrcl.c | |- C = ( chr ` R ) |
|
Assertion | chrcl | |- ( R e. Ring -> C e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrcl.c | |- C = ( chr ` R ) |
|
2 | eqid | |- ( od ` R ) = ( od ` R ) |
|
3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
4 | 2 3 1 | chrval | |- ( ( od ` R ) ` ( 1r ` R ) ) = C |
5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
6 | 5 3 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
7 | 5 2 | odcl | |- ( ( 1r ` R ) e. ( Base ` R ) -> ( ( od ` R ) ` ( 1r ` R ) ) e. NN0 ) |
8 | 6 7 | syl | |- ( R e. Ring -> ( ( od ` R ) ` ( 1r ` R ) ) e. NN0 ) |
9 | 4 8 | eqeltrrid | |- ( R e. Ring -> C e. NN0 ) |