Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | chrcl.c | |- C = ( chr ` R ) |
|
| Assertion | chrcl | |- ( R e. Ring -> C e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | |- C = ( chr ` R ) |
|
| 2 | eqid | |- ( od ` R ) = ( od ` R ) |
|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 4 | 2 3 1 | chrval | |- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 5 3 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 7 | 5 2 | odcl | |- ( ( 1r ` R ) e. ( Base ` R ) -> ( ( od ` R ) ` ( 1r ` R ) ) e. NN0 ) |
| 8 | 6 7 | syl | |- ( R e. Ring -> ( ( od ` R ) ` ( 1r ` R ) ) e. NN0 ) |
| 9 | 4 8 | eqeltrrid | |- ( R e. Ring -> C e. NN0 ) |