Metamath Proof Explorer


Theorem chrcl

Description: Closure of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypothesis chrcl.c
|- C = ( chr ` R )
Assertion chrcl
|- ( R e. Ring -> C e. NN0 )

Proof

Step Hyp Ref Expression
1 chrcl.c
 |-  C = ( chr ` R )
2 eqid
 |-  ( od ` R ) = ( od ` R )
3 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
4 2 3 1 chrval
 |-  ( ( od ` R ) ` ( 1r ` R ) ) = C
5 eqid
 |-  ( Base ` R ) = ( Base ` R )
6 5 3 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) )
7 5 2 odcl
 |-  ( ( 1r ` R ) e. ( Base ` R ) -> ( ( od ` R ) ` ( 1r ` R ) ) e. NN0 )
8 6 7 syl
 |-  ( R e. Ring -> ( ( od ` R ) ` ( 1r ` R ) ) e. NN0 )
9 4 8 eqeltrrid
 |-  ( R e. Ring -> C e. NN0 )