Step |
Hyp |
Ref |
Expression |
1 |
|
chrcl.c |
|- C = ( chr ` R ) |
2 |
|
chrid.l |
|- L = ( ZRHom ` R ) |
3 |
|
chrid.z |
|- .0. = ( 0g ` R ) |
4 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
6 |
4 5 1
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = C |
7 |
6
|
breq1i |
|- ( ( ( od ` R ) ` ( 1r ` R ) ) || ( M - N ) <-> C || ( M - N ) ) |
8 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
9 |
8
|
3ad2ant1 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> R e. Grp ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
10 5
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
12 |
11
|
3ad2ant1 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( 1r ` R ) e. ( Base ` R ) ) |
13 |
|
simp2 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
14 |
|
simp3 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
15 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
16 |
10 4 15 3
|
odcong |
|- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || ( M - N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
17 |
9 12 13 14 16
|
syl112anc |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || ( M - N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
18 |
7 17
|
bitr3id |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( C || ( M - N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
19 |
2 15 5
|
zrhmulg |
|- ( ( R e. Ring /\ M e. ZZ ) -> ( L ` M ) = ( M ( .g ` R ) ( 1r ` R ) ) ) |
20 |
19
|
3adant3 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( L ` M ) = ( M ( .g ` R ) ( 1r ` R ) ) ) |
21 |
2 15 5
|
zrhmulg |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) ) |
22 |
21
|
3adant2 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) ) |
23 |
20 22
|
eqeq12d |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( ( L ` M ) = ( L ` N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
24 |
18 23
|
bitr4d |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( C || ( M - N ) <-> ( L ` M ) = ( L ` N ) ) ) |