| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chrcl.c |
|- C = ( chr ` R ) |
| 2 |
|
chrid.l |
|- L = ( ZRHom ` R ) |
| 3 |
|
chrid.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
4 5 1
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 7 |
6
|
breq1i |
|- ( ( ( od ` R ) ` ( 1r ` R ) ) || ( M - N ) <-> C || ( M - N ) ) |
| 8 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 9 |
8
|
3ad2ant1 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> R e. Grp ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
10 5
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 12 |
11
|
3ad2ant1 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 13 |
|
simp2 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
| 14 |
|
simp3 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
| 15 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 16 |
10 4 15 3
|
odcong |
|- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || ( M - N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
| 17 |
9 12 13 14 16
|
syl112anc |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || ( M - N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
| 18 |
7 17
|
bitr3id |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( C || ( M - N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
| 19 |
2 15 5
|
zrhmulg |
|- ( ( R e. Ring /\ M e. ZZ ) -> ( L ` M ) = ( M ( .g ` R ) ( 1r ` R ) ) ) |
| 20 |
19
|
3adant3 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( L ` M ) = ( M ( .g ` R ) ( 1r ` R ) ) ) |
| 21 |
2 15 5
|
zrhmulg |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) ) |
| 22 |
21
|
3adant2 |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) ) |
| 23 |
20 22
|
eqeq12d |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( ( L ` M ) = ( L ` N ) <-> ( M ( .g ` R ) ( 1r ` R ) ) = ( N ( .g ` R ) ( 1r ` R ) ) ) ) |
| 24 |
18 23
|
bitr4d |
|- ( ( R e. Ring /\ M e. ZZ /\ N e. ZZ ) -> ( C || ( M - N ) <-> ( L ` M ) = ( L ` N ) ) ) |