Metamath Proof Explorer


Theorem chrdvds

Description: The ZZ ring homomorphism is zero only at multiples of the characteristic. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses chrcl.c
|- C = ( chr ` R )
chrid.l
|- L = ( ZRHom ` R )
chrid.z
|- .0. = ( 0g ` R )
Assertion chrdvds
|- ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( L ` N ) = .0. ) )

Proof

Step Hyp Ref Expression
1 chrcl.c
 |-  C = ( chr ` R )
2 chrid.l
 |-  L = ( ZRHom ` R )
3 chrid.z
 |-  .0. = ( 0g ` R )
4 eqid
 |-  ( od ` R ) = ( od ` R )
5 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
6 4 5 1 chrval
 |-  ( ( od ` R ) ` ( 1r ` R ) ) = C
7 6 breq1i
 |-  ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> C || N )
8 ringgrp
 |-  ( R e. Ring -> R e. Grp )
9 8 adantr
 |-  ( ( R e. Ring /\ N e. ZZ ) -> R e. Grp )
10 eqid
 |-  ( Base ` R ) = ( Base ` R )
11 10 5 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) )
12 11 adantr
 |-  ( ( R e. Ring /\ N e. ZZ ) -> ( 1r ` R ) e. ( Base ` R ) )
13 simpr
 |-  ( ( R e. Ring /\ N e. ZZ ) -> N e. ZZ )
14 eqid
 |-  ( .g ` R ) = ( .g ` R )
15 10 4 14 3 oddvds
 |-  ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) )
16 9 12 13 15 syl3anc
 |-  ( ( R e. Ring /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) )
17 7 16 bitr3id
 |-  ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) )
18 2 14 5 zrhmulg
 |-  ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) )
19 18 eqeq1d
 |-  ( ( R e. Ring /\ N e. ZZ ) -> ( ( L ` N ) = .0. <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) )
20 17 19 bitr4d
 |-  ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( L ` N ) = .0. ) )