| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chrcl.c |
|- C = ( chr ` R ) |
| 2 |
|
chrid.l |
|- L = ( ZRHom ` R ) |
| 3 |
|
chrid.z |
|- .0. = ( 0g ` R ) |
| 4 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
| 5 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 6 |
4 5 1
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = C |
| 7 |
6
|
breq1i |
|- ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> C || N ) |
| 8 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 9 |
8
|
adantr |
|- ( ( R e. Ring /\ N e. ZZ ) -> R e. Grp ) |
| 10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 11 |
10 5
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 12 |
11
|
adantr |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 13 |
|
simpr |
|- ( ( R e. Ring /\ N e. ZZ ) -> N e. ZZ ) |
| 14 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 15 |
10 4 14 3
|
oddvds |
|- ( ( R e. Grp /\ ( 1r ` R ) e. ( Base ` R ) /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 16 |
9 12 13 15
|
syl3anc |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 17 |
7 16
|
bitr3id |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 18 |
2 14 5
|
zrhmulg |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( L ` N ) = ( N ( .g ` R ) ( 1r ` R ) ) ) |
| 19 |
18
|
eqeq1d |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( ( L ` N ) = .0. <-> ( N ( .g ` R ) ( 1r ` R ) ) = .0. ) ) |
| 20 |
17 19
|
bitr4d |
|- ( ( R e. Ring /\ N e. ZZ ) -> ( C || N <-> ( L ` N ) = .0. ) ) |