Step |
Hyp |
Ref |
Expression |
1 |
|
chpssat.1 |
|- A e. CH |
2 |
|
chpssat.2 |
|- B e. CH |
3 |
|
nssinpss |
|- ( -. A C_ B <-> ( A i^i B ) C. A ) |
4 |
1 2
|
chincli |
|- ( A i^i B ) e. CH |
5 |
4 1
|
chrelati |
|- ( ( A i^i B ) C. A -> E. x e. HAtoms ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) ) |
6 |
|
atelch |
|- ( x e. HAtoms -> x e. CH ) |
7 |
|
chlub |
|- ( ( ( A i^i B ) e. CH /\ x e. CH /\ A e. CH ) -> ( ( ( A i^i B ) C_ A /\ x C_ A ) <-> ( ( A i^i B ) vH x ) C_ A ) ) |
8 |
4 1 7
|
mp3an13 |
|- ( x e. CH -> ( ( ( A i^i B ) C_ A /\ x C_ A ) <-> ( ( A i^i B ) vH x ) C_ A ) ) |
9 |
|
simpr |
|- ( ( ( A i^i B ) C_ A /\ x C_ A ) -> x C_ A ) |
10 |
8 9
|
syl6bir |
|- ( x e. CH -> ( ( ( A i^i B ) vH x ) C_ A -> x C_ A ) ) |
11 |
10
|
adantld |
|- ( x e. CH -> ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) -> x C_ A ) ) |
12 |
|
ssin |
|- ( ( x C_ A /\ x C_ B ) <-> x C_ ( A i^i B ) ) |
13 |
12
|
notbii |
|- ( -. ( x C_ A /\ x C_ B ) <-> -. x C_ ( A i^i B ) ) |
14 |
|
chnle |
|- ( ( ( A i^i B ) e. CH /\ x e. CH ) -> ( -. x C_ ( A i^i B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) |
15 |
4 14
|
mpan |
|- ( x e. CH -> ( -. x C_ ( A i^i B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) |
16 |
13 15
|
syl5bb |
|- ( x e. CH -> ( -. ( x C_ A /\ x C_ B ) <-> ( A i^i B ) C. ( ( A i^i B ) vH x ) ) ) |
17 |
16 8
|
anbi12d |
|- ( x e. CH -> ( ( -. ( x C_ A /\ x C_ B ) /\ ( ( A i^i B ) C_ A /\ x C_ A ) ) <-> ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) ) ) |
18 |
|
pm3.21 |
|- ( x C_ B -> ( x C_ A -> ( x C_ A /\ x C_ B ) ) ) |
19 |
|
orcom |
|- ( ( ( x C_ A /\ x C_ B ) \/ -. x C_ A ) <-> ( -. x C_ A \/ ( x C_ A /\ x C_ B ) ) ) |
20 |
|
pm4.55 |
|- ( -. ( -. ( x C_ A /\ x C_ B ) /\ x C_ A ) <-> ( ( x C_ A /\ x C_ B ) \/ -. x C_ A ) ) |
21 |
|
imor |
|- ( ( x C_ A -> ( x C_ A /\ x C_ B ) ) <-> ( -. x C_ A \/ ( x C_ A /\ x C_ B ) ) ) |
22 |
19 20 21
|
3bitr4ri |
|- ( ( x C_ A -> ( x C_ A /\ x C_ B ) ) <-> -. ( -. ( x C_ A /\ x C_ B ) /\ x C_ A ) ) |
23 |
18 22
|
sylib |
|- ( x C_ B -> -. ( -. ( x C_ A /\ x C_ B ) /\ x C_ A ) ) |
24 |
23
|
con2i |
|- ( ( -. ( x C_ A /\ x C_ B ) /\ x C_ A ) -> -. x C_ B ) |
25 |
24
|
adantrl |
|- ( ( -. ( x C_ A /\ x C_ B ) /\ ( ( A i^i B ) C_ A /\ x C_ A ) ) -> -. x C_ B ) |
26 |
17 25
|
syl6bir |
|- ( x e. CH -> ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) -> -. x C_ B ) ) |
27 |
11 26
|
jcad |
|- ( x e. CH -> ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) -> ( x C_ A /\ -. x C_ B ) ) ) |
28 |
6 27
|
syl |
|- ( x e. HAtoms -> ( ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) -> ( x C_ A /\ -. x C_ B ) ) ) |
29 |
28
|
reximia |
|- ( E. x e. HAtoms ( ( A i^i B ) C. ( ( A i^i B ) vH x ) /\ ( ( A i^i B ) vH x ) C_ A ) -> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |
30 |
5 29
|
syl |
|- ( ( A i^i B ) C. A -> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |
31 |
3 30
|
sylbi |
|- ( -. A C_ B -> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |
32 |
|
sstr2 |
|- ( x C_ A -> ( A C_ B -> x C_ B ) ) |
33 |
32
|
com12 |
|- ( A C_ B -> ( x C_ A -> x C_ B ) ) |
34 |
33
|
ralrimivw |
|- ( A C_ B -> A. x e. HAtoms ( x C_ A -> x C_ B ) ) |
35 |
|
iman |
|- ( ( x C_ A -> x C_ B ) <-> -. ( x C_ A /\ -. x C_ B ) ) |
36 |
35
|
ralbii |
|- ( A. x e. HAtoms ( x C_ A -> x C_ B ) <-> A. x e. HAtoms -. ( x C_ A /\ -. x C_ B ) ) |
37 |
|
ralnex |
|- ( A. x e. HAtoms -. ( x C_ A /\ -. x C_ B ) <-> -. E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |
38 |
36 37
|
bitri |
|- ( A. x e. HAtoms ( x C_ A -> x C_ B ) <-> -. E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |
39 |
34 38
|
sylib |
|- ( A C_ B -> -. E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |
40 |
39
|
con2i |
|- ( E. x e. HAtoms ( x C_ A /\ -. x C_ B ) -> -. A C_ B ) |
41 |
31 40
|
impbii |
|- ( -. A C_ B <-> E. x e. HAtoms ( x C_ A /\ -. x C_ B ) ) |