Metamath Proof Explorer


Theorem chrid

Description: The canonical ZZ ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015)

Ref Expression
Hypotheses chrcl.c
|- C = ( chr ` R )
chrid.l
|- L = ( ZRHom ` R )
chrid.z
|- .0. = ( 0g ` R )
Assertion chrid
|- ( R e. Ring -> ( L ` C ) = .0. )

Proof

Step Hyp Ref Expression
1 chrcl.c
 |-  C = ( chr ` R )
2 chrid.l
 |-  L = ( ZRHom ` R )
3 chrid.z
 |-  .0. = ( 0g ` R )
4 1 chrcl
 |-  ( R e. Ring -> C e. NN0 )
5 4 nn0zd
 |-  ( R e. Ring -> C e. ZZ )
6 eqid
 |-  ( .g ` R ) = ( .g ` R )
7 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
8 2 6 7 zrhmulg
 |-  ( ( R e. Ring /\ C e. ZZ ) -> ( L ` C ) = ( C ( .g ` R ) ( 1r ` R ) ) )
9 5 8 mpdan
 |-  ( R e. Ring -> ( L ` C ) = ( C ( .g ` R ) ( 1r ` R ) ) )
10 eqid
 |-  ( od ` R ) = ( od ` R )
11 10 7 1 chrval
 |-  ( ( od ` R ) ` ( 1r ` R ) ) = C
12 11 oveq1i
 |-  ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = ( C ( .g ` R ) ( 1r ` R ) )
13 eqid
 |-  ( Base ` R ) = ( Base ` R )
14 13 7 ringidcl
 |-  ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) )
15 13 10 6 3 odid
 |-  ( ( 1r ` R ) e. ( Base ` R ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = .0. )
16 14 15 syl
 |-  ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = .0. )
17 12 16 eqtr3id
 |-  ( R e. Ring -> ( C ( .g ` R ) ( 1r ` R ) ) = .0. )
18 9 17 eqtrd
 |-  ( R e. Ring -> ( L ` C ) = .0. )