Step |
Hyp |
Ref |
Expression |
1 |
|
chrcl.c |
|- C = ( chr ` R ) |
2 |
|
chrid.l |
|- L = ( ZRHom ` R ) |
3 |
|
chrid.z |
|- .0. = ( 0g ` R ) |
4 |
1
|
chrcl |
|- ( R e. Ring -> C e. NN0 ) |
5 |
4
|
nn0zd |
|- ( R e. Ring -> C e. ZZ ) |
6 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
7 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
8 |
2 6 7
|
zrhmulg |
|- ( ( R e. Ring /\ C e. ZZ ) -> ( L ` C ) = ( C ( .g ` R ) ( 1r ` R ) ) ) |
9 |
5 8
|
mpdan |
|- ( R e. Ring -> ( L ` C ) = ( C ( .g ` R ) ( 1r ` R ) ) ) |
10 |
|
eqid |
|- ( od ` R ) = ( od ` R ) |
11 |
10 7 1
|
chrval |
|- ( ( od ` R ) ` ( 1r ` R ) ) = C |
12 |
11
|
oveq1i |
|- ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = ( C ( .g ` R ) ( 1r ` R ) ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
13 7
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
15 |
13 10 6 3
|
odid |
|- ( ( 1r ` R ) e. ( Base ` R ) -> ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = .0. ) |
16 |
14 15
|
syl |
|- ( R e. Ring -> ( ( ( od ` R ) ` ( 1r ` R ) ) ( .g ` R ) ( 1r ` R ) ) = .0. ) |
17 |
12 16
|
eqtr3id |
|- ( R e. Ring -> ( C ( .g ` R ) ( 1r ` R ) ) = .0. ) |
18 |
9 17
|
eqtrd |
|- ( R e. Ring -> ( L ` C ) = .0. ) |