Step |
Hyp |
Ref |
Expression |
1 |
|
rhmrcl1 |
|- ( F e. ( R RingHom S ) -> R e. Ring ) |
2 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
3 |
2
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
4 |
1 3
|
syl |
|- ( F e. ( R RingHom S ) -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
5 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
6 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
7 |
5 6
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
8 |
|
ffn |
|- ( ( ZRHom ` R ) : ZZ --> ( Base ` R ) -> ( ZRHom ` R ) Fn ZZ ) |
9 |
4 7 8
|
3syl |
|- ( F e. ( R RingHom S ) -> ( ZRHom ` R ) Fn ZZ ) |
10 |
|
eqid |
|- ( chr ` R ) = ( chr ` R ) |
11 |
10
|
chrcl |
|- ( R e. Ring -> ( chr ` R ) e. NN0 ) |
12 |
|
nn0z |
|- ( ( chr ` R ) e. NN0 -> ( chr ` R ) e. ZZ ) |
13 |
1 11 12
|
3syl |
|- ( F e. ( R RingHom S ) -> ( chr ` R ) e. ZZ ) |
14 |
|
fvco2 |
|- ( ( ( ZRHom ` R ) Fn ZZ /\ ( chr ` R ) e. ZZ ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( F ` ( ( ZRHom ` R ) ` ( chr ` R ) ) ) ) |
15 |
9 13 14
|
syl2anc |
|- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( F ` ( ( ZRHom ` R ) ` ( chr ` R ) ) ) ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
10 2 16
|
chrid |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` ( chr ` R ) ) = ( 0g ` R ) ) |
18 |
1 17
|
syl |
|- ( F e. ( R RingHom S ) -> ( ( ZRHom ` R ) ` ( chr ` R ) ) = ( 0g ` R ) ) |
19 |
18
|
fveq2d |
|- ( F e. ( R RingHom S ) -> ( F ` ( ( ZRHom ` R ) ` ( chr ` R ) ) ) = ( F ` ( 0g ` R ) ) ) |
20 |
15 19
|
eqtrd |
|- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( F ` ( 0g ` R ) ) ) |
21 |
|
rhmco |
|- ( ( F e. ( R RingHom S ) /\ ( ZRHom ` R ) e. ( ZZring RingHom R ) ) -> ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) ) |
22 |
4 21
|
mpdan |
|- ( F e. ( R RingHom S ) -> ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) ) |
23 |
|
rhmrcl2 |
|- ( F e. ( R RingHom S ) -> S e. Ring ) |
24 |
|
eqid |
|- ( ZRHom ` S ) = ( ZRHom ` S ) |
25 |
24
|
zrhrhmb |
|- ( S e. Ring -> ( ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) <-> ( F o. ( ZRHom ` R ) ) = ( ZRHom ` S ) ) ) |
26 |
23 25
|
syl |
|- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) e. ( ZZring RingHom S ) <-> ( F o. ( ZRHom ` R ) ) = ( ZRHom ` S ) ) ) |
27 |
22 26
|
mpbid |
|- ( F e. ( R RingHom S ) -> ( F o. ( ZRHom ` R ) ) = ( ZRHom ` S ) ) |
28 |
27
|
fveq1d |
|- ( F e. ( R RingHom S ) -> ( ( F o. ( ZRHom ` R ) ) ` ( chr ` R ) ) = ( ( ZRHom ` S ) ` ( chr ` R ) ) ) |
29 |
|
rhmghm |
|- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
30 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
31 |
16 30
|
ghmid |
|- ( F e. ( R GrpHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
32 |
29 31
|
syl |
|- ( F e. ( R RingHom S ) -> ( F ` ( 0g ` R ) ) = ( 0g ` S ) ) |
33 |
20 28 32
|
3eqtr3d |
|- ( F e. ( R RingHom S ) -> ( ( ZRHom ` S ) ` ( chr ` R ) ) = ( 0g ` S ) ) |
34 |
|
eqid |
|- ( chr ` S ) = ( chr ` S ) |
35 |
34 24 30
|
chrdvds |
|- ( ( S e. Ring /\ ( chr ` R ) e. ZZ ) -> ( ( chr ` S ) || ( chr ` R ) <-> ( ( ZRHom ` S ) ` ( chr ` R ) ) = ( 0g ` S ) ) ) |
36 |
23 13 35
|
syl2anc |
|- ( F e. ( R RingHom S ) -> ( ( chr ` S ) || ( chr ` R ) <-> ( ( ZRHom ` S ) ` ( chr ` R ) ) = ( 0g ` S ) ) ) |
37 |
33 36
|
mpbird |
|- ( F e. ( R RingHom S ) -> ( chr ` S ) || ( chr ` R ) ) |