Step |
Hyp |
Ref |
Expression |
1 |
|
chrval.o |
|- O = ( od ` R ) |
2 |
|
chrval.u |
|- .1. = ( 1r ` R ) |
3 |
|
chrval.c |
|- C = ( chr ` R ) |
4 |
|
fveq2 |
|- ( r = R -> ( od ` r ) = ( od ` R ) ) |
5 |
4 1
|
eqtr4di |
|- ( r = R -> ( od ` r ) = O ) |
6 |
|
fveq2 |
|- ( r = R -> ( 1r ` r ) = ( 1r ` R ) ) |
7 |
6 2
|
eqtr4di |
|- ( r = R -> ( 1r ` r ) = .1. ) |
8 |
5 7
|
fveq12d |
|- ( r = R -> ( ( od ` r ) ` ( 1r ` r ) ) = ( O ` .1. ) ) |
9 |
|
df-chr |
|- chr = ( r e. _V |-> ( ( od ` r ) ` ( 1r ` r ) ) ) |
10 |
|
fvex |
|- ( O ` .1. ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( R e. _V -> ( chr ` R ) = ( O ` .1. ) ) |
12 |
|
fvprc |
|- ( -. R e. _V -> ( chr ` R ) = (/) ) |
13 |
|
fvprc |
|- ( -. R e. _V -> ( od ` R ) = (/) ) |
14 |
1 13
|
eqtrid |
|- ( -. R e. _V -> O = (/) ) |
15 |
14
|
fveq1d |
|- ( -. R e. _V -> ( O ` .1. ) = ( (/) ` .1. ) ) |
16 |
|
0fv |
|- ( (/) ` .1. ) = (/) |
17 |
15 16
|
eqtrdi |
|- ( -. R e. _V -> ( O ` .1. ) = (/) ) |
18 |
12 17
|
eqtr4d |
|- ( -. R e. _V -> ( chr ` R ) = ( O ` .1. ) ) |
19 |
11 18
|
pm2.61i |
|- ( chr ` R ) = ( O ` .1. ) |
20 |
3 19
|
eqtr2i |
|- ( O ` .1. ) = C |