| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							chrval.o | 
							 |-  O = ( od ` R )  | 
						
						
							| 2 | 
							
								
							 | 
							chrval.u | 
							 |-  .1. = ( 1r ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							chrval.c | 
							 |-  C = ( chr ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							fveq2 | 
							 |-  ( r = R -> ( od ` r ) = ( od ` R ) )  | 
						
						
							| 5 | 
							
								4 1
							 | 
							eqtr4di | 
							 |-  ( r = R -> ( od ` r ) = O )  | 
						
						
							| 6 | 
							
								
							 | 
							fveq2 | 
							 |-  ( r = R -> ( 1r ` r ) = ( 1r ` R ) )  | 
						
						
							| 7 | 
							
								6 2
							 | 
							eqtr4di | 
							 |-  ( r = R -> ( 1r ` r ) = .1. )  | 
						
						
							| 8 | 
							
								5 7
							 | 
							fveq12d | 
							 |-  ( r = R -> ( ( od ` r ) ` ( 1r ` r ) ) = ( O ` .1. ) )  | 
						
						
							| 9 | 
							
								
							 | 
							df-chr | 
							 |-  chr = ( r e. _V |-> ( ( od ` r ) ` ( 1r ` r ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fvex | 
							 |-  ( O ` .1. ) e. _V  | 
						
						
							| 11 | 
							
								8 9 10
							 | 
							fvmpt | 
							 |-  ( R e. _V -> ( chr ` R ) = ( O ` .1. ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fvprc | 
							 |-  ( -. R e. _V -> ( chr ` R ) = (/) )  | 
						
						
							| 13 | 
							
								
							 | 
							fvprc | 
							 |-  ( -. R e. _V -> ( od ` R ) = (/) )  | 
						
						
							| 14 | 
							
								1 13
							 | 
							eqtrid | 
							 |-  ( -. R e. _V -> O = (/) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq1d | 
							 |-  ( -. R e. _V -> ( O ` .1. ) = ( (/) ` .1. ) )  | 
						
						
							| 16 | 
							
								
							 | 
							0fv | 
							 |-  ( (/) ` .1. ) = (/)  | 
						
						
							| 17 | 
							
								15 16
							 | 
							eqtrdi | 
							 |-  ( -. R e. _V -> ( O ` .1. ) = (/) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							eqtr4d | 
							 |-  ( -. R e. _V -> ( chr ` R ) = ( O ` .1. ) )  | 
						
						
							| 19 | 
							
								11 18
							 | 
							pm2.61i | 
							 |-  ( chr ` R ) = ( O ` .1. )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							eqtr2i | 
							 |-  ( O ` .1. ) = C  |